

# Name of the Programme: B.Sc. Chemistry (CBCS)

# Programme Outcomes (PO)

After completing the Three Year Undergraduate Programme in Chemistry, Students are expected to achieve the following Programme Outcomes:

PO1: Knowledge/Academic expertise

**PO2: Critical Thinking** 

**PO3: Effective Communication** 

**PO4: Social Interaction** 

**PO5: Effective Citizenship** 

**PO6: Ethics** 

PO7: Environmental and Sustainability

PO8: Self-directed and Life-long Learning

**PO9: Community engagement** 

PO10: Individuality and Teamwork

**PO11:** Competencies for employment

**PO12: Competencies for Research** 

## Programme Specific Outcomes (PSO)

The programme specific outcomes of the Undergraduate Programme in Chemistry are listed below. After completing the programme, the students will be able to-

#### PSO1: Understand the basics of Chemistry.

• Gain knowledge in fundamental aspects of various branches of Chemistry.

#### **PSO2:** Applications of Chemistry in day to day Life.

• Apply the key concepts and standard methodologies to solve problems related to Chemistry.

#### **PSO3:** Development of Analytical and experimental skills.

- Gain analytical and experimental skills which will equip them to contribute to academic and industrial environments.
- Prepare themselves for higher education and a career in Chemistry.

#### **Course Outcomes (CO)**

## **B.Sc.** 1<sup>st</sup> Semester

## **Course Title: Inorganic Chemistry**

Course Code: C-101

#### On completion of this course, a student will be able to:

- **CO1:** Learn the concept of sign of wave function, counter boundary and probability diagrams.
- **CO2:** Understand variations of orbital energy with atomic number.
- CO3: Learn properties of elements, atomic radii, ionic radii, size effect of ionic bond
- **CO4:** Grab the Concept of solvation energy, covalent character of ionic bond, redox equations.
- **CO5:** Understand the principle involved in volumetric analysis.

#### **Course Title: Physical Chemistry**

Course Code: C-102

#### At the end of this course, the student should be able to:

- **CO1:** Matriculate the Kinetic molecular model of a gas, behaviour of real gases etc.
- **CO2:** Know the effect of addition of various solute on surface tension and viscosity and also the cleansing action of detergents.
- **CO3:** Understand the nature of solid state, elementary idea of symmetry.
- **CO4:** Gain an idea of solubility and solubility product of sparingly soluble salts.
- **CO5:** Carry out Surface tension and viscosity measurement experiments.

## B.Sc. 2<sup>nd</sup> Semester

#### **Course Title: Organic Chemistry**

Course Code: C-201

### At the end of this course, the student should be able to:

- **CO1:** Gain knowledge of basic organic chemistry and definitions.
- **CO2:** Learn the classification of stereoisomerism, optical activity, absolute and relative configuration etc.
- **CO3:** Gain knowledge of elimination reaction, electrophilic and nucleophilic addition.
- **CO4:** Understand the relative stability of cyclic hydrocarbon, Bayer's strain theory etc.
- **CO5:** Carry out experiments on Purification of organic compounds by crystallization, melting points, chromatography.

#### **Course Title: Physical Chemistry**

Course Code: C-202

#### At the end of this course, the student should be able to:

- **CO1:** Learn the application of mathematical tools to calculate thermodynamic properties.
- **CO2:** Gain the concept of free energy change and spontaneity.
- **CO3:** Understand thermodynamics derivation of relation between Gibbs free energy of reaction and reaction quotient.
- **CO4:** Connect the relation between the four colligative properties using chemical potential.
- **CO5:** Perform experiments related to Thermochemistry.

## B.Sc. 3<sup>rd</sup> Semester

#### **Course Title: Inorganic Chemistry**

Course Code: C-301

#### At the end of this course, the student should be able to:

- **CO1:** Predict the purification of metal.
- **CO2:** Emphasize the structure, bonding, preparation and properties of compounds.
- CO3: Understand real world applications, shapes etc of noble gas.
- **CO4:** Know various types of acids and bases, concept of hard acid and bases and their application.
- **CO5:** Gain knowledge on the structural aspects and applications of inorganic polymer.

#### **Course Title: Organic Chemistry**

Course Code: C-302

#### At the end of this course, the student should be able to:

- **CO1:** Predict the mechanism for organic reactions.
- **CO2:** Know how to design synthesis of organic molecule.
- **CO3:** Build knowledge on the reactivity and stability of organic molecule based on structure.
- **CO4:** Gain an idea of alcohols, phenols, carbonyl compounds, acids and their derivatives etc.
- **CO5:** Carry out experiments on Organic preparations.

## **Course Title: Physical Chemistry**

Course Code: C-303

#### At the end of this course the student should be able to:

**CO1:** Know the types of catalysis, Michaelis – Menten mechanism, mechanism of catalysed reaction at solid state.

**CO2:** Matriculate steady - state approximation in reaction mechanism.

**CO3:** Gain the concept of phases, phase diagrams for systems of solid-liquid.

CO4: Grab the concept of phases, phase diagrams for systems of solid-liquid.

**CO5:** Carry out the experiments of CST, Saponification, and Freundlich and Langmuir isotherms.

## B.Sc. 4<sup>th</sup> Semester

## **Course Title: Inorganic Chemistry**

Course Code: C-401

#### At the end of this course the student should be able to:

**CO1:** Predict metal ion present in biological systems

**CO2:** Know the use of chelating agents in medicine.

**CO3:** Understand the quantitative aspect of ligand field and MO theory

**CO4:** Gain knowledge on the stability of various oxidation states and emf of transition elements

**CO5:** Know the property, application and separation of inner transition elements

#### **Course Title: Organic Chemistry**

Course Code: C-402

#### At the end of this course the student should be able to:

**CO1:** Learn the reaction for preparation of Heterocyclic compounds

CO2: Learn reaction for preparation of Heterocyclic compounds, polynuclear hydrocarbons

**CO3:** Understand methods of structure elucidation of terpenoids

**CO4:** Learn reaction for preparation of polynuclear hydrocarbons

CO5: Carry out Experiments on Detection of elements (N, S and Halogens), Functional group test for nitro, amine and amide groups and Qualitative analysis of unknown organic compounds

#### **Course Title: Physical Chemistry**

Course Code: C-403

#### At the end of this course the student should be able to:

**CO1:** Understand quantitative aspects of Faraday's laws of electrolysis

**CO2:** Learn application of conductance measurement

**CO3:** Know the concept of electrical and magnetic properties of atoms and molecules

**CO4:** Understand Electrochemistry, various laws governing electro chemical process and their application.

**CO5:** Perform experiments on Conductometry and Potentiometry

PO, PSO & CO

## B.Sc. 5<sup>th</sup> Semester

## **Course Title: Organic Chemistry**

Course Code: C-501

#### At the end of this course the student should be able to:

- **CO1** Know the chemical basis for biological phenomena and cellular structure.
- CO2 Learn the chemical basis for biological phenomena and cellular structure.
- CO3 Understand enzyme kinetics, chemical logic of metabolism
- CO4 Know health, disease and modern medicine are all rooted in biological chemistry

**Chemistry** 

CO5 Perform estimation of glycine, Saponification value of an oil or a fat etc

#### **Course Title: Physical Chemistry**

Course Code: C-502

#### At the end of this course the student should be able to:

- **CO1** Know the difference between classical and quantum mechanics
- CO2 Know qualitative treatment of hydrogen atom and hydrogen like ions
- CO3 Know interpretation of spectra
- CO4 Understand the role of photochemical reaction in biochemical processes
- CO5 Carry out experiments related to UV/Visible spectroscopy and Colorimetry

#### **Course Title: Analytical Methods in Chemistry**

Course Code: DSE-501

#### At the end of this course the student should be able to:

- CO1 Understand the principles and applications of modern chemical instrumentation, experimental design and data analysis
- Know the composition of written laboratory reports that summarize experimental procedures and the accurately present and interpret data
- CO3 Learn qualitative and quantitative aspect of solvent extraction, chromatographic method of analysis -TLC & HPLC
- **CO4** Learn chromatographic separation technique
- **CO5** Carry out analysis of of different samples

## **Course Title: Green Chemistry**

Course Code: DSE-502

#### At the end of this course the student should be able to:

- **CO1** Know the concept of green chemistry
- CO2 Know the use of safer chemicals iii. Concept of atom economy
- **CO3** Learn the use of green solvent
- **CO4** Learn the use of safer chemicals
- CO5 Understand the concept of atom economy

## B.Sc. 6<sup>th</sup> Semester

#### **Course Title: Inorganic Chemistry**

Course Code: C-601

#### At the end of this course the student should be able to:

- CO1 Understand basic principles involved in analysis of anions, cations solubility product, common ion effect etc
- CO2 Know inorganic reaction mechanism
- CO3 Know the use of Wilkinson's catalyst in industrial process of hydrogenation of alkene, gas synthesis by metal carbonyl
- CO4 Learn hepacity of organic ligands, 18 electron rule, Zeise's salt etc
- CO5 Learn preparation, structure, bonding, synergic effect of metal carbonyl complexes, use of IR data to explain back bonding

## **Course Title: Organic Chemistry**

Course Code: C-602

#### At the end of this course the student should be able to:

- CO1 Learn application of UV, IR, NMR spectroscopy
- CO2 Learn application of mass spectra in organic molecule
- **CO3** Know biological importance of carbohydrates
- **CO4** Gain Knowledge on biodegradable polymer, colour and constitution of dyes and applications of different dyes
- CO5 Carry out qualitative analysis of unknown organic compounds containing monofunctional groups, Extraction of caffeine from tea leaves and Identification of simple organic compounds by IR spectroscopy and NMR Spectroscopy

#### **Course Title: Inorganic Materials of Industrial Importance**

Course Code: DSE-601

#### At the end of this course the student should be able to:

- CO1 Understand the properties and the types of different glasses, ceramics and cements.
- CO2 Learn different types and manufacture of fertilizers, composition of paint pigments
- CO3 Know working principle of different batteries, elements present in alloys, different types of steel etc
- **CO4** Determine the free acidity of fertilizer
- **CO5** Determine the pH of different soil samples

#### **Course Title: Dissertation**

Course Code: DSE-603

### At the end of this course the student should be able to:

- CO1 Communicate effectively, verbally and written for the purpose of conveying chemical information to both professional scientists and to the public.
- **CO2** Know availability of instrument for conducting specific, scientific research.
- **CO3** Know how to do research work and write a review rticle on a particular field/topic as assigned by the teacher
- **CO4** Know how to handle the technical devices for presenting research works.
- **CO5** Develop research-oriented skills.

\*\*\*\*\*