

TEACHING PLAN DEPARTMENT OF PHYSICS JULY 2023-JUNE 2024

Course: B. Sc.

Session: Odd semester 2023

Subject: Physics

Name of the Teacher: MR. DIGANTA KONWAR

Designation: Associate Professor

Methods to be applied: Lecture, Assignment and test, interaction and discussion.

Teaching Materials: Board and Marker, ICT tools like Projector, online platform like zoom,

Google Classroom etc.

Paper Code/	Allotted Unit/	No. Of	Detail of the topic to be taught	No. Of
Title		Class		tutorials
		required		
C-1:	Unit 2:	4	Kinematics of Moving Fluids, Poiseuille's	1
Mechanics	Properties of		Equation for Flow of a Liquid through a	
and	Matter		Capillary Tube	
Properties	Unit 3:	8	Simple Harmonic Motion (SHM) and	2
of Matter	Oscillations		Oscillations, Differential Equation of SHM	
			and its solution, Kinetic Energy, Potential	
			Energy, Total energy and their time-average	
			values, Damped oscillation, Forced	
			oscillations, Resonance, Power Dissipation	
			and Quality Factor.	
Minor-1:	Unit 3:	10	Simple Harmonic Motion (SHM) and	2
Mechanics	Oscillations		Oscillations, Differential Equation of SHM	
			and its solution, Kinetic Energy, Potential	
			Energy, Total energy and their time-average	
			values, Damped oscillation, Forced	
			oscillations, Resonance, Power Dissipation and Quality Factor.	
SEC-1:	Unit 8:	3	Different types of conductors and cables.	
SEC-1: Electrical	ElectricalEle	5	Basics of wiring-Star and delta connection.	
Circuits and	ctrical		Voltage drop and losses across cables and	
Network	Wiring		conductors. Instruments to measure current,	
Skills	,, mig		voltage, power in DC and AC circuits.	
DKHIS			Insulation. Solid and stranded cable. Conduit.	
			Cable trays. Splices: wire nuts, crimps,	
			terminal blocks, split bolts, and solder.	
			Preparation of the extension board.	
C-7: Digital	i. Introduction	3	Block Diagram of CRO. Electron Gun, Deflection	
Electronics	to CRO:		System and Time Base. Deflection Sensitivity.	
			Applications of CRO: (1) Study of Waveform, (2)	
			Measurement of Voltage, Current, Frequency,	
			and Phase Difference	
	ii. Integrated	3	Active & Passive components. Discrete	1
	Circuits		components. Wafer. Chip. Advantages and	
	(Qualitative		drawbacks of ICs. Scale of integration: SSI,	
	treatment		MSI, LSI and VLSI (basic idea and definitions	
	only)		only). Classification of ICs. Examples of Linear	
		C	and Digital ICs.	2
	iii. Digital	6	Difference between Analog and Digital	2

I	Circuits		Circuits. Binary Numbers. Decimal to Binary]
			and Binary to Decimal Conversion. BCD, Octal	
			and Hexadecimal numbers. AND, OR and NOT	
			Gates (realization using Diodes and Transistor).	
			NAND and NOR Gates as Universal Gates.	
			XOR and XNOR Gates and application as	
			Parity Checkers.	
	iv. Boolean	6	De Morgan's Theorems. Boolean Laws.	1
	algebra		Simplification of Logic Circuit using Boolean	
			Algebra. Fundamental Products. Idea of	
			Minterms and Maxterms. Conversion of a Truth	
			table into Equivalent Logic Circuit by (1) Sum	
			of Products Method and (2) Karnaugh Map.	
	v. Data	4	Basic idea of Multiplexers, De-multiplexers,	1
	processing		Decoders, Encoders	
	circuits			
	vi. Arithmetic	5	Binary Addition. Binary Subtraction using 2's	1
	Circuits		Complement. Half and Full Adders. Half & Full	
		6	Subtractors, 4-bit binary Adder/Subtractor.	
	vii. Sequential	6	SR, D, and JK Flip-Flops. Clocked (Level and	1
	Circuits		Edge Triggered) Flip-Flops. Preset and Clear	
			operations. Race-around conditions in JK Flip- Flop. M/S JK Flip-Flop.	
	viii. Timers	3	IC 555: block diagram and applications: Astable	1
	viii. Timers	5	multivibrator and Monostable multivibrator.	-
	ix. Shift	2	Serial-in-Serial-out, Serial-in-Parallel-out,	
	registers		Parallel-in-Serial-out and Parallel-in-Parallel-	
	0		out Shift Registers (only up to 4 bits).	
C-12: Solid	i. Dielectric	8	Polarization. Local Electric Field at an Atom.	2
State Physics	Properties of		Depolarization Field. Electric Susceptibility.	
	Materials		Polarizability. Clausius Mosotti Equation.	
			Classical Theory of Electric Polarizability.	
			Normal and Anomalous Dispersion. Cauchy	
			and Sellmeir relations. Langevin-Debye equation. Complex Dielectric. Constant. Optical	
			Phenomena. Application: Plasma Oscillations,	
			Plasma Frequency, Plasmons, TO modes.	
	ii.	6	Structural phase transition, Classification of	1
	 Ferroelectric		crystals, Piezoelectric effect, Pyroelectric effect,	
	Properties of		Ferroelectric effect, Electrostrictive effect,	
	Materials:		Curie-Weiss Law, Ferroelectric domains, PE	
			hysteresis loop	
	iii. Elementary	10	Kronig Penny model. Band Gap. Conductor,	2
	band theory		Semiconductor (P and N type) and insulator.	
			Conductivity of Semiconductor, mobility, Hall	
			Effect. Measurement of conductivity (04 probe	
			method) & Hall coefficient	
DSE-1:	i. Classical	22	Review of Newtonian Mechanics; Application	4
Classical	Mechanics of		to the motion of a charge particle in external	
Dynamics	Point Particles		electric and magnetic fields- motion in uniform	
Dynamics			electric field, magnetic field- gyroradius and	
			gyrofrequency, motion in crossed electric and	
			magnetic fields. Generalized coordinates and	
			velocities, Hamilton's principle, Lagrangian and	
i i i i i i i i i i i i i i i i i i i				
			the Euler-Lagrange equations, one-dimensional examples of the Euler-Lagrange equations- one-	

			dimensional Simple Harmonic Oscillations and falling body in uniform gravity; applications to simple systems such as coupled oscillators Canonical momenta & Hamiltonian. Hamilton's equations of motion. Applications: Hamiltonian for a harmonic oscillator, solution of Hamilton's equation for Simple Harmonic Oscillations; particle in a central force field- conservation of angular momentum and energy.	
	ii. Small Amplitude Oscillations	10	Minima of potential energy and points of stable equilibrium, expansion of the potential energy around a minimum, small amplitude oscillations about the minimum, normal modes of oscillations example of N identical masses connected in a linear fashion to (N -1) - identical springs.	2
GE-3: Thermal Physics and Statistical Mechanics	iii. Kinetic Theory of Gases	10	Derivation of Maxwell's law of distribution of velocities and its experimental verification, Mean free path (Zeroth Order), Transport Phenomena: Viscosity, Conduction and Diffusion (for vertical case), Law of equipartition of energy (no derivation) and its applications to specific heat of gases; mono- atomic and diatomic gases.	1

Course: B. Sc.

Session: Even semester 2024

Subject: Physics

Name of the Teacher: MR. DIGANTA KONWAR

Designation: Associate Professor

Methods to be applied: Lecture, Assignment and test, interaction and discussion.

Teaching Materials: Board and Marker, ICT tools like Projector, online platform like zoom, Google Classroom etc.

Paper Code/	Allotted Unit/	No. Of	Detail of the topic to be taught	No. Of
Title	Торіс	Class		tutorials
		required		
C-2: Wave and	Unit 1:	5	1. Linearity and Superposition Principle.	1
optics	Superposition		Superposition of two collinear	
	of Harmonic		oscillations having equal frequencies	
	Oscillations		and different frequencies (Beats).	
			Superposition of N collinear Harmonic	
			Oscillations with equal phase	
			differences and equal frequency	
			differences.	
		3	2. Graphical and Analytical Methods.	
			Lissajous Figures with equal and	

			unequal frequency and their use.	
Minor-2: Waves	Unit 1:	8	1.1: Linearity and Superposition	2
and Optics	Superposition		Principle,	
-	of Harmonic		Superposition of two collinear	
	Oscillations		oscillations having (i) equal frequencies	
			and (ii) different frequencies(Beats),	
			Superposition of N collinear Harmonic	
			Oscillations with (i) equal phase	
			differences and (2) equal frequency	
			differences	
		5	1.2: Superposition of two perpendicular	1
			Harmonic Oscillations: Graphical and	
			Analytical Methods, Lissajous Figures	
			with equal and unequal frequency and	
			their use.	
SEC-2:	Unit 3:	2	Block diagram of basic CRO.	
Basic	Cathode Ray		Construction of CRT, Electron gun,	
Instrumentation	Oscilloscope		electrostatic focusing and acceleration	
Skills			(Explanation only– no mathematical	
			treatment), brief discussion on screen	
			phosphor, visual persistence & chemical	
			composition. Time base operation,	
			synchronization. Front panel controls.	
			Specifications of a CRO and their	
			significance.	
C-10: Analog	i.	10	P and N type semiconductors. Energy	1
system and	Semiconductor		Level Diagram. Conductivity and	
Applications	Diodes		Mobility, Concept of Drift velocity. PN	
			Junction Fabrication (Simple Idea). Barrier Formation in PN Junction Diode.	
			Static and Dynamic Resistance. Current	
			Flow Mechanism in Forward and Reverse	
			Biased Diode. Drift Velocity. Derivation	
			for Barrier Potential, Barrier Width and	
			Current for Step Junction. Current Flow	
			Mechanism in Forward and Reverse	
			Biased Diode.	
	ii. Two-terminal	6	(1) Rectifier Diode: Half-wave Rectifiers.	1
	Devices and		Centre-tapped and Bridge Full-wave	
	their		Rectifiers, Calculation of Ripple Factor	
	Applications		and Rectification Efficiency, C-filter (2)	
			Zener Diode and Voltage Regulation.	
			Principle and structure of (1) LEDs, (2)	
		6	Photodiode and (3) Solar Cell.	1
	iii. Bipolar	6	n-p-n and p-n-p Transistors.	1
	Junction		Characteristics of CB, CE and CC	
	transistors		Configurations. Current gains α and β Relations between α and β . Load Line	
			analysis of Transistors. DC Load line and	
			Q-point. Physical Mechanism of Current	
			Flow. Active, Cutoff and Saturation	
			Regions.	
	iv. Amplifiers	10	Transistor Biasing and Stabilization	2
		-	Circuits. Fixed Bias and Voltage Divider	
			Bias. Transistor as 2-port Network. h-	
	1		parameter Equivalent Circuit. Analysis of	

	v. Coupled amplifiers	4	a single-stage CE amplifier using Hybrid Model. Input and Output Impedance. Current, Voltage and Power Gains. Classification of Class A, B & C Amplifiers. Two stage RC coupled Amplifier and its frequency response.	
	vi. Feedback in Amplifiers	4	Effect of positive and negative feedback on Input impedence, Output impedence, Gain, Stability, Distortion and noise.	1
DSE-3: Nuclear and Particle Physics	i. General Properties of Nuclei	10	Constituents of nucleus and their Intrinsic properties, quantitative facts about mass, radii, charge density (matter density), binding energy, average binding energy and its variation with mass number, main features of binding energy versus mass number curve, N/A plot, angular momentum, parity, magnetic moment, electric moments, nuclear excites states.	2
	ii. Nuclear Models	12	Liquid drop model approach, semi empirical mass formula and significance of its various terms, condition of nuclear stability, two nucleon separation energies, Fermi gas model (degenerate fermion gas, nuclear symmetry potential in Fermi gas), evidence for nuclear shell structure, nuclear magic numbers, basic assumption of shell model, concept of mean field, residual interaction, concept of nuclear force.	3
	iii. Radioactivity decay	10	(a) Alpha decay: basics of α -decay processes, theory of α -emission, Gamow factor, Geiger Nuttall law, α -decay spectroscopy. (b) \Box -decay: energy kinematics for \Box -decay, positron emission, electron capture, neutrino hypothesis. (c) Gamma decay: Gamma rays emission & kinematics, internal conversion.	2
	iv. Nuclear Reactions	8	Types of Reactions, Conservation Laws, kinematics of reactions, Q-value, reaction rate, reaction cross section, Concept of compound and direct Reaction, resonance reaction, Coulomb scattering (Rutherford scattering).	2

Diganta Konwar

HoD, Dept of Physics HOD Department of Physics Gargaon College

Course: B. Sc.

Session: Odd semester 2023

 Subject: Physics
 Name of the Teacher: GUNA KANTA SONOWAL
 Designation: Assistant Professor
 Methods to be applied: Lecture, Assignment and test, Seminar Presentation/Group Discussion/Micro Teaching.

Teaching Materials: Board and Marker, ICT tools like Projector, online platform like Google meet, zoom, Google Classroom etc.

Paper Code/ Title	Allotted Unit/ Topic	No. Of Class required	Detail of the topic to be taught	No. Of tutorials
C-1 :	Unit 2:	4	Relation between Elastic constants,	1
Mechanics	Properties of		Twisting torque	
and	Matter		on a Cylinder or Wire.	
Properties of	Unit 4:	8	Non-inertial Frames and Fictitious Forces,	2
Matter	Non-Inertial		Uniformly	
	Systems		Rotating Frame, Laws of Physics in	
			rotating coordinate	
			systems, Centrifugal Force, Coriolis Force	
			and its	
			applications, Components of Velocity and	
			Acceleration	
			in Cylindrical and Spherical Coordinate	
Minor-1 :		4	Systems.	1
-	Properties of	4	Relation between Elastic constants,	1
Mechanics	Matter		Twisting torque on a Cylinder or Wire.	
and Properties of	Watter	8	Non-inertial Frames and Fictitious Forces,	2
Matter	Non-Inertial	0	Uniformly	2
Matter	Systems		Rotating Frame, Laws of Physics in	
	by stems		rotating coordinate	
			systems, Centrifugal Force, Coriolis Force	
			and its	
			applications, Components of Velocity and	
			Acceleration	
			in Cylindrical and Spherical Coordinate	
			Systems.	
SEC-1:	Unit-1: Basic	2	Voltage, Current, Resistance, and Power.	
Electrical	electricity		Ohm's law.	
circuit and	Principle		Series, parallel, and series-parallel	
networking.	_		combinations. AC	
0-			Electricity and DC, Electricity.	
			Familiarization with	
			multimeter, voltmeter and ammeter.	
	Unit 2:	1	Main electric circuit elements and their	
	Understandin		combination.	
	g Electrical		Rules to analyze DC sourced electrical	

	Circuits		circuits. Current	
	Circuits			
			and voltage drop across the DC circuit	
			elements.	
C-6: Thermal	i.	7	Thermodynamic Potentials: Internal Energy,	1
Physics	Thermodynamic		Enthalpy, Helmholtz Free Energy, Gibb's	
	Potentials		Free Energy. Their Definitions, Properties	
			and Applications. Surface Films and	
			Variation of Surface Tension with	
			Temperature. Magnetic Work, Cooling due	
			to adiabatic demagnetization, First and	
			second order Phase Transitions with	
			examples, Clausius Clapeyron Equation and	
			Ehrenfest equations .	
	ii. Maxwell's	7	Derivations and applications of Maxwell's	1
	Thermodynamic		Relations, Maxwell's Relations:(1) Clausius	
	Relations		Clapeyron equation, (2) Values of Cp-Cv, (3)	
			TdS Equations, (4) Joule-Kelvin coefficient	
			for Ideal and Van der Waal Gases, (5)	
			Energy equations, (6) Change of	
			Temperature during Adiabatic Process.	
	iii. Distribution	7	Maxwell-Boltzmann Law of Distribution of	2
		/	Velocities in an Ideal Gas and its	2
	of Velocities		Experimental Verification. Doppler	
			Broadening of Spectral Lines and Stern's	
			Experiment. Mean, RMS and Most Probable	
			Speeds. Degrees of Freedom. Law of	
			Equipartition of Energy (No proof required).	
			Specific heats of Gases.	
	iv. Molecular	4	Mean Free Path. Collision Probability.	1
	Collisions	-	Estimates of Mean Free Path. Transport	-
	Comsions		Phenomenon in Ideal Gases: (1) Viscosity,	
			(2) Thermal Conductivity and (3) Diffusion.	
			Brownian Motion and its Significance.	
	v. Real Gases	10	Behavior of Real Gases: Deviations from the	3
		-	Ideal Gas Equation. The Virial Equation.	-
			Andrew's Experiments on CO2 Gas. Critical	
			Constants. Continuity of Liquid and Gaseous	
			State. Vapour and Gas. Boyle Temperature.	
			Van der Waal's Equation of State for Real	
			Gases. Values of Critical Constants. Law of	
			Corresponding States. Comparison with	
			Experimental Curves. P-V Diagrams. Joule's	
			Even entres each Even - Aultablish Error - Aultablish	
			Experiment. Free Adiabatic Expansion of a	
			Perfect Gas. Joule-Thomson Porous Plug	
			Perfect Gas. Joule-Thomson Porous Plug Experiment. Joule- Thomson Effect for Real	
			Perfect Gas. Joule-Thomson Porous Plug Experiment. Joule- Thomson Effect for Real and Van der Waal Gases. Temperature of	
			Perfect Gas. Joule-Thomson Porous Plug Experiment. Joule- Thomson Effect for Real and Van der Waal Gases. Temperature of Inversion. Joule- Thomson Cooling.	
GE-3:	i. Statistical	12	Perfect Gas. Joule-Thomson Porous Plug Experiment. Joule- Thomson Effect for Real and Van der Waal Gases. Temperature of	3
GE-3: Thermal	i. Statistical Mechanics:	12	Perfect Gas. Joule-Thomson Porous Plug Experiment. Joule- Thomson Effect for Real and Van der Waal Gases. Temperature of Inversion. Joule- Thomson Cooling.	3
		12	Perfect Gas. Joule-Thomson Porous Plug Experiment. Joule- Thomson Effect for Real and Van der Waal Gases. Temperature of Inversion. Joule- Thomson Cooling. Phase space, Macrostate and Microstate,	3
Thermal		12	Perfect Gas. Joule-Thomson Porous Plug Experiment. Joule- Thomson Effect for Real and Van der Waal Gases. Temperature of Inversion. Joule- Thomson Cooling. Phase space, Macrostate and Microstate, Entropy and Thermodynamic probability,	3
Thermal Physics and Statistical		12	 Perfect Gas. Joule-Thomson Porous Plug Experiment. Joule- Thomson Effect for Real and Van der Waal Gases. Temperature of Inversion. Joule- Thomson Cooling. Phase space, Macrostate and Microstate, Entropy and Thermodynamic probability, Maxwell-Boltzmann law - distribution of 	3
Thermal Physics and		12	 Perfect Gas. Joule-Thomson Porous Plug Experiment. Joule- Thomson Effect for Real and Van der Waal Gases. Temperature of Inversion. Joule- Thomson Cooling. Phase space, Macrostate and Microstate, Entropy and Thermodynamic probability, Maxwell-Boltzmann law - distribution of velocity - Quantum statistics - Fermi-Dirac distribution law - electron gas - Bose- 	3
Thermal Physics and Statistical		12	 Perfect Gas. Joule-Thomson Porous Plug Experiment. Joule- Thomson Effect for Real and Van der Waal Gases. Temperature of Inversion. Joule- Thomson Cooling. Phase space, Macrostate and Microstate, Entropy and Thermodynamic probability, Maxwell-Boltzmann law - distribution of velocity - Quantum statistics - Fermi-Dirac 	3

Quantum	dopondont		dynamical evolution of a quantum state;	1
Quantum Mechanics	dependent Schrodinger		Properties of Wave Function. Interpretation	
	Schrodinger		of Wave Function Probability and probability	
and	equation		current densities in three dimensions;	
Applications.			Conditions for Physical Acceptability of	
			Wave Functions. Normalization. Linearity	
			and Superposition Principles. Eigenvalues	
			and Eigenfunctions. Position, momentum and	
			Energy operators; commutator of position	
			and momentum operators; Expectation	
			values of position and momentum. Wave	
			Function of a Free Particle.	
	ii. Time	10	Hamiltonian, stationary states and energy	3
	independent	10	eigenvalues; expansion of an arbitrary	
	-		wavefunction as a linear combination of	
	Schrodinger			
	equation		energy eigenfunctions; General solution of	
			the time dependent Schrodinger equation in	
			terms of linear combinations of stationary	
			states; Application to spread of Gaussian	
			wave-packet for a free particle in one	
			dimension; wave packets, Fourier transforms	
			and momentum space wavefunction;	
			Position-momentum uncertainty principle.	
	iii. General	12	Continuity of wave function, boundary	
	discussion of		condition and emergence of discrete energy	
	bound states in		levels; application to one-dimensional	
	an arbitrary		problem-square well potential; Quantum	
	potential		mechanics of simple harmonic oscillator-	
			energy levels and energy eigen functions	
			using Frobenius method; Hermite	
			polynomials; ground state, zero point energy	
			& uncertainty principle.	
	iv. Quantum	10	time independent Schrodinger equation in	2
	theory of		spherical polar coordinates; separation of	
	hydrogen-like		variables for second order partial differential	
	atoms		equation; angular momentum operator &	
			quantum numbers; Radial wave functions	
			from Frobenius method; shapes of the	
			probability densities for ground & first	
			excited states; Orbital angular momentum	
			quantum numbers I and m; s, p, d shells.	
	v. Atoms in	8	Electron angular momentum. Space	2
	Electric &	-	quantization. Electron Spin and Spin Angular	_
	Magnetic		Momentum. Larmor's Theorem. Spin	
	Fields:		Magnetic Moment. Stern-Gerlach	
			Experiment. Zeeman Effect: Electron	
			Magnetic Moment and Magnetic Energy,	
		Δ	Gyromagnetic Ratio and Bohr Magneton.	
	vi. Atoms in	4	Normal and Anomalous Zeeman Effect.	
	External		Paschen Back and Stark Effect (Qualitative	
	Magnetic Fields		Discussion only).	
	vii. Many	10	Pauli's Exclusion Principle. Symmetric &	3
	electron		Antisymmetric Wave Functions. Periodic	
	atoms:		table. Fine structure. Spin orbit coupling.	
			Spectral Notations for Atomic States. Total	

angular momentum. Vector Model. Spin-	
orbit coupling in atoms-L-S and J-J couplings.	
Hund's Rule. Term symbols. Spectra of	
Hydrogen and Alkali atoms (Na etc.)	

Course: B. Sc.

Session: Even semester 2024

 Subject: Physics
 Name of the Teacher: GUNA KANTA SONOWAL
 Designation: Assistant Professor
 Methods to be applied: Lecture, Assignment and test, Seminar Presentation/Group Discussion/Micro Teaching.

Teaching Materials: Board and Marker, ICT tools like Projector, online platform like Google meet, zoom, Google Classroom etc.

Paper Code/	Allotted Unit/	No. Of	Detail of the topic to be taught	No. Of
Title	Торіс	Class required		tutorials
C-2:	Unit 3:	7	Standing (Stationary) Waves in a String:	1
Waves and	Harmonic		Fixed and Free Ends, Analytical	
Optics	Waves		Treatment, Phase and Group Velocities,	
			Changes with respect to Position and	
			Time, Energy of Vibrating String,	
			Transfer of Energy, Normal Modes of	
			Stretched Strings, Plucked and Struck	
			Strings, Melde's Experiment,	
			Longitudinal Standing Waves and	
			Normal Modes, Open and Closed Pipes,	
			Superposition of N Harmonic Waves.	
Minor-2:	Unit 3:	7	Standing (Stationary) Waves in a String:	1
Waves and	Superposition		Fixed and Free Ends, Analytical	
Optics	of Harmonic		Treatment, Phase and Group Velocities,	
	Waves		Changes with respect to Position and	
			Time, Energy of Vibrating String,	
			Transfer of Energy, Normal Modes of	
			Stretched Strings, Plucked and Struck	
			Strings, Melde's Experiment,	
			Longitudinal Standing Waves and	
			Normal Modes, Open and Closed Pipes,	
			Superposition of N Harmonic Waves.	
SEC-2:	Unit 1:	2	Instruments accuracy, precision,	
Basic	Basic of		sensitivity, resolution	
Instrumentation	Measurement		range etc. Errors in measurements and	
Skills			loading effects.	

	1		M-14:	
			Multimeter: Principles of measurement	
			of dc voltage	
			and dc current, ac voltage, ac current	
			and resistance.	
			Specifications of a multimeter and their	
			significance	
C-8:	i. Complex	30	Brief Revision of Complex Numbers and	4
Mathematical	Analysis.		their Graphical Representation. Euler's	
Physics- III			formula, De Moivre's theorem, Roots of	
			Complex Numbers. Functions of Complex	
			Variables. Analyticity and Cauchy-	
			Riemann Conditions. Examples of	
			analytic functions. Singular functions:	
			poles and branch points, order of	
			singularity, branch cuts. Integration of a	
			function of a complex variable. Cauchy's	
			Inequality. Cauchy's Integral formula.	
			Simply and multiply connected region.	
			Laurent and Taylor's expansion. Residues	
			and Residue Theorem. Application in	
05.4.14		40	solving Definite Integrals.	
GE-4: Wave and	i. Sound	10	Simple harmonic motion - forced	2
Optics			vibrations and resonance - Fourier's	
			Theorem - Application to saw tooth wave	
			and square wave - Intensity and loudness	
			of sound - Decibels - Intensity levels -	
			musical notes - musical scale. Acoustics of	
			buildings: Reverberation and time of	
			reverberation - Absorption coefficient -	
			Sabine's formula - measurement of	
			reverberation time - Acoustic aspects of	
			halls and auditoria.	
C-13:	i. Polarization of	12	Description of Linear, Circular and	
electromagnetic	Electromagnetic		Elliptical Polarization. Propagation of E.M.	
Theory	Waves		Waves in Anisotropic Media. Symmetric	
•			Nature of Dielectric Tensor. Fresnel's	
			Formula. Uniaxial and Biaxial Crystals.	
			Light Propagation in Uniaxial Crystal.	
			Double Refraction. Polarization by Double	
			Refraction. Nicol Prism. Ordinary &	
			extraordinary refractive indices.	
			Production & detection of Plane,	
			Circularly and Elliptically Polarized Light.	
			Phase Retardation Plates: Quarter-Wave	
			and Half-Wave Plates. Babinet	
			Compensator and its Uses. Analysis of	
			Polarized Light	
C-14: Statistical	i. Classical	18	Macrostate & Microstate, Elementary	3
Mechanics	Statistics	10	Concept of Ensemble, Phase Space,	
	Statistics		Entropy and Thermodynamic Probability,	
			Maxwell-Boltzmann Distribution Law,	
			Partition Function, Thermodynamic	
			Functions of an Ideal Gas, Classical	
			Entropy Expression, Gibbs Paradox,	
			Sackur Tetrode equation, Law of	

		Equipartition of Energy (with proof) – Applications to Specific Heat and its Limitations, Thermodynamic Functions of a Two-Energy Levels System, Negative Temperature	
ii. Classical Theory of Radiation:	9	Properties of Thermal Radiation. Blackbody Radiation. Pure temperature dependence. Kirchhoff's law. Stefan- Boltzmann law: Thermodynamic proof. Radiation Pressure. Wien's Displacement law. Wien's Distribution Law. Saha's Ionization Formula. Rayleigh-Jean's Law. Ultraviolet Catastrophe.	1
iii. Quantum Theory of Radiation:	5	Spectral Distribution of Black Body Radiation. Planck's Quantum Postulates. Planck's Law of Blackbody Radiation: Experimental Verification. Deduction of (1) Wien's Distribution Law, (2) Rayleigh- Jeans Law, (3) Stefan-Boltzmann Law, (4) Wien's Displacement law from Planck's law.	

Growal

(Guna Kanta Sonowal)

Done

H.O.D.

Dept of Physics

HOD Department of Physics Gargaon College

TEACHING PLAN FOR ODD SEMESTER

Course: B. Sc.

Session: Odd semester 2023

Subject: Physics Name of the Teacher: JAYANTA SONOWAL Designation: Assistant Professor

Semester	First Semester (Major)
Paper Code/Title	Paper Code: C - 1
-	Paper Title: MECHANICS AND PROPERTIES OF MATTER
Allotted Unit/Topic	Newtonian Mechanics
Number of Classes	12
	1.1: Frames of Reference, Inertial Frames, Galilean Transformations, Galilean Invariance; Dynamics of a System of Particles, Centre of Mass, Principle of Conservation of Linear Momentum.
Details of the topic	1.2: The Work-Energy Theorem, Conservative and Non-conservative Forces, Conservation of Mechanical Energy, Work done by non- conservative forces, Force as gradient of potential energy, Energy Diagram, Stable and Unstable Equilibrium
Teaching Tools	 Board and Marker ICT tools like Projector, online platform like Google Classroom, Google Meet etc.
Evaluation Process	 Sessional Examination Unit Test Seminar Presentation/Group Discussion
Semester	First Semester (Minor)
Paper Code/Title	Paper Code: MINOR 1 Paper Title: MECHANICS
Allotted Unit/Topic	Newtonian Mechanics
Number of Classes	6
Details of the topic	1.1: Frames of Reference, Inertial Frames, Galilean Transformations, Galilean Invariance; Dynamics of a System of Particles, Centre of Mass, Principle of Conservation of Linear Momentum.
Teaching Tools	 Board and Marker ICT tools like Projector, online platform like Google Classroom, Google Meet etc.

Evaluation Process	 Sessional Examination Unit Test Seminar Presentation/Group Discussion
Semester	First Semester (Generic Elective Courses)
Paper Code/Title	Paper Code: GEC - 1 Paper Title: Generic Elective Course

Allotted Unit/Topic	Unit: 2
Number of Classes	6
Details of the topic	Maxwell's contributions, Contributions of Thomas A. Addison.
Details of the topic	
Teeshine Teele	• Board and Marker
Teaching Tools	• ICT tools like Projector, online platform like Google Classroom,
	Google Meet etc.
	Sessional Examination
Evaluation Process	• Unit Test
	Seminar Presentation/Group Discussion
Semester	First Semester (Generic Elective Courses)
bennester	Paper Code: GEC - 1
Paper Code/Title	Paper Title: Generic Elective Course
Allotted Unit/Topic	Generators
Number of Classes	3
Truiniber of Classes	DC Power Sources, AC/ DC generators, Inductance, Capacitance and
	Impedance. Operation of transformers, Single phase, three phase & DC
Details of the topic	Motors. Basic design. Interfacing DC or AC Sources to control heater and
	motors, speed and power of ac motor.
	Board and Marker
Teaching Tools	ICT tools like Projector, online platform like Google Classroom,
Teaching 10015	Google Meet etc.
	Sessional Examination
Evaluation Process	Unit Test
	Seminar Presentation/Group Discussion
	Seminar Presentation Story Discussion
Semester	Third Semester (Honours)
Paper Code/Title	Paper Code: PHYSICS-C III
	Paper Title: MATHEMATICAL PHYSICS-II
Allotted Unit/Topic	Theory of Errors, Partial Differential Equations
Number of Classes	20
	Theory of Errors:
	Systematic and Random Errors. Propagation of Errors. Normal Law of
	Errors. Standard and Probable Error. Least-squares fit. Error on the
	slope and intercept of a fitted line.
Details of the topic	
becans of the topic	Partial Differential Equations:
	Solutions to partial differential equations, using separation of variables:
	Laplace's Equation in problems of rectangular, cylindrical and spherical
	symmetry. Wave equation and its solution for vibrational modes of a
	stretched string, rectangular and circular membranes. Diffusion

	Equation.
Teaching Tools Evaluation Process	 Board and Marker ICT tools like Projector, online platform like Google Classroom, Google Meet etc. Sessional Examination Unit Test Seminar Presentation/Group Discussion
Semester	Third Semester (Honours)
Paper Code/Title	Paper Code: PHYSICS-C III Paper Title: DIGITAL SYSTEMS AND APPLICATIONS
Allotted Unit/Topic	Computer Organization, Intel 8085 Microprocessor Architecture, Introduction to Assembly Language
Number of Classes	18
Details of the topic	 Computer Organization: Input/ Output Devices. Data storage (idea of RAM and ROM). Computer memory. Memory organization & addressing. Memory Interfacing. Memory Map. Intel 8085 Microprocessor Architecture: Main features of 8085. Block diagram. Components. Pin-out diagram. Buses. Registers. ALU. Memory. Stack memory. Timing & Control circuitry. Timing states. Instruction cycle, Timing diagram of MOV and MVI Introduction to Assembly Language: 1 byte, 2 byte & 3 byte instruction
Teaching Tools	 Board and Marker ICT tools like Projector Online platform like Google Classroom, Google Meet etc.
Evaluation Process	 Sessional Examination Unit Test Seminar Presentation/Group Discussion
Semester	Third Semester (Generic)
Paper Code/Title	Paper Code: GE-3 Paper Title: THERMAL PHYSICS AND STATISTICAL MECHANICS
Allotted Unit/Topic	Thermodynamic Potentials

Number of Classes	10
Details of the topic	Thermodynamic Potentials: Enthalpy, Gibbs, Helmholtz and Internal Energy functions, Maxwell's relations and applications - Joule-Thompson Effect, Clausius-Clapeyron Equation, Expression for (CP – CV), CP/CV, TdS equations.
Teaching Tools	 Board and Marker ICT tools like Projector, online platform like Google Classroom, Google Meet etc.
Evaluation Process	 Sessional Examination Unit Test Seminar Presentation/Group Discussion
Semester	Fifth Semester (Honours)
Paper Code/Title	Paper Code: PHYSICS-DSE 2 Paper Title: ASTRONOMY AND ASTROPHYSICS
Allotted Unit/Topic	 Astronomical Scales: Astronomical Scales, Basic concepts of positional astronomy, Astronomical techniques, Physical principles, The milky way, Large scale structure & expanding universe. Basic concepts of positional astronomy: Celestial Sphere, Geometry of a Sphere, Spherical Triangle Astronomical Coordinate Systems, Geographical Coordinate Systems, Horizon System, Equatorial System, Diurnal Motion of the Stars, Conversion of Coordinates. Measurement of Time, Sidereal Time, Apparent Solar Time, Mean Solar Time, Equation of Time, Calendar. Basic Parameters of Stars: Determination of Distance by Parallax Method; Brightness, Radiant Flux and Luminosity, Apparent and Absolute magnitude scale, Distance Modulus; Determination of Temperature and Radius of a star; Determination of Masses from Binary orbits; Stellar Spectral Classification, Hertzsprung-Russell Diagram. Astronomical techniques: Basic Optical Definitions for Astronomy (Magnification Light Gathering Power, Resolving Power and Diffraction Limit, Atmospheric Windows), Optical Telescopes (Types of Reflecting Telescopes, Telescope Mountings, Space Telescopes, Detectors and Their Use with Telescopes (Types of Detectors, detection Limits with Telescopes).

	Systems in Thermodynamic Equilibrium.	
	The milky way :	
	Basic Structure and Properties of the Milky Way, Nature of Rotation of	
	the Milky Way (Differential Rotation of the Galaxy and Oort Constant,	
	Rotation Curve of the Galaxy and the Dark Matter, Nature of the Spiral	
	Arms), Stars and Star Clusters of the Milky Way, Properties of and	
	around the Galactic Nucleus.	
Number of Classes	47	
Details of the topic		
	Board and Marker	
Teaching Tools	• ICT tools like Projector, online platform like Google Classroom,	
	Google Meet etc.	
	Sessional Examination	
Evaluation Process	• Unit Test	
	Seminar Presentation/Group Discussion	

TEACHING PLAN FOR EVEN SEMESTER

Course: B. Sc.

Session: Even semester 2024

Subject: Physics Name of the Teacher: JAYANTA SONOWAL Designation: Assistant Professor

Semester	Second Semester (Honours)
Paper Code/Title	Paper Code: C-2 Paper Title: Waves and Optics
Allotted Unit/Topic	Interference
Number of Classes	12
Details of the topic	 5.1: Division of amplitude and wavefront, Young's double slit experiment, Lloyd's Mirror and Fresnel's Biprism, Phase change on reflection: Stokes' treatment, Interference in Thin Films: parallel and wedge-shaped films. Newton's Rings: Measurement of wavelength and refractive index. 5.2: Michelson Interferometer- (i) Idea of form of fringes (No theory required), (ii) Determination of Wavelength, (iii) Wavelength Difference, (iv) Refractive Index and (v) Visibility of Fringes. Fabry-Perot interferometer.
Teaching Tools	 Board and Marker ICT tools like Projector, online platform like Google Classroom, Google Meet etc.
Evaluation Process	Sessional ExaminationUnit Test

Semester Second Semester (Minor) Paper Code/Title Paper Tote: Waves and Optics Allotted Unit/Topic Interference Number of Classes 14 Details of the topic 5.1: Division of amplitude and wavefront, Young's double slit experiment, Ungd's Mirror and Fresnel's Bi-prism, Phase change on reflection: Stokes' treatment, Interference in Thin Films: parallel and wedge-shaped films. Newton's Rings: Measurement of wavelength and refractive index. Teaching Tools • Board and Marker Feaching Tools • CT tools like Projector, online platform like Google Classroom, Google Meet etc. Evaluation Process • Unit Test • Seminar Presentation/Group Discussion Semester Second Semester Paper Code/Title Paper Tote: Basic Instrumentation Skills Allotted Unit/Topic Digital Instruments, Digital Multimeter Number of Classes 4 Principle and working of digital meters. Comparison of analog and digital instruments. Characteristics of digital multimeter. Working principle of time interval, frequency and period measurement using universal counter/ frequency counter, time- base stability, accuracy and resolution. Details of the topic • Board and Marker ICT tools like Projector, online platform like Google Classroom, Google Meet etc. • Sessional Examination interval, frequency and pe		Seminar Presentation/Group Discussion
Paper Code/Title Paper Code: Minor-2 Paper Title: Waves and Optics Allotted Unit/Topic Interference Number of Classes 14 Details of the topic 5.1: Division of amplitude and wavefront, Young's double slit experiment, Uoyd's Mirror and Fresnel's Bi-prism, Phase change on reflection: Stokey', treatment, Interference in Thin Films: parallel and wedge-shaped films. Newton's Rings: Measurement of wavelength and refractive index. Teaching Tools Board and Marker ICT tools like Projector, online platform like Google Classroom, Google Meet etc. Sessional Examination Unit Test Seminar Presentation/Group Discussion Semester Second Semester Paper Title: Basic Instrumentation Skills Allotted Unit/Topic Digital Instruments, Digital Multimeter Number of Classes 4 Principle and working of a digital multimeter. Working principle of digital instruments. Characteristics of digital multimeter. Working principle of digital voltmeter. Details of the topic Block diagram and working of a digital multimeter. Working principle of time interval, frequency and period measurement using universal counter/ frequency counter, time- base stability, accuracy and resolution. Teaching Tools Board and Marker ICT tools like Projector, online platform like Google Classroom, Go		
Paper Code/Title Paper Code: Minor-2 Paper Title: Waves and Optics Allotted Unit/Topic Interference Number of Classes 14 Details of the topic 5.1: Division of amplitude and wavefront, Young's double slit experiment, Uoyd's Mirror and Fresnel's Bi-prism, Phase change on reflection: Stokey', treatment, Interference in Thin Films: parallel and wedge-shaped films. Newton's Rings: Measurement of wavelength and refractive index. Teaching Tools Board and Marker ICT tools like Projector, online platform like Google Classroom, Google Meet etc. Sessional Examination Unit Test Seminar Presentation/Group Discussion Semester Second Semester Paper Title: Basic Instrumentation Skills Allotted Unit/Topic Digital Instruments, Digital Multimeter Number of Classes 4 Principle and working of a digital multimeter. Working principle of digital instruments. Characteristics of digital multimeter. Working principle of digital voltmeter. Details of the topic Block diagram and working of a digital multimeter. Working principle of time interval, frequency and period measurement using universal counter/ frequency counter, time- base stability, accuracy and resolution. Teaching Tools Board and Marker ICT tools like Projector, online platform like Google Classroom, Go	C (
Paper Code/Title Paper Title: Waves and Optics Allotted Unit/Topic Interference Number of Classes 14 Details of the topic 5.1: Division of amplitude and wavefront, Young's double slit experiment, Uloyd's Mirror and Fresnel's Bi-prism, Phase change on reflection: Stokes' treatment, Interference in Thin Films: parallel and wedge-shaped films. Newton's Rings: Measurement of wavelength and refractive index. Teaching Tools • Board and Marker • ICT tools like Projector, online platform like Google Classroom, Google Meet etc. Evaluation Process • Sessional Examination • Unit Test • Seminar Presentation/Group Discussion Semester Second Semester Paper Code/Title Paper Code: SEC-2 Paper Title: Basic Instruments, Digital Multimeter Number of Classes 4 Principle and working of a digital meters. Comparison of analog and digital instruments. Characteristics of digital multimeter. Working principle of digital voltmeter. Details of the topic Block diagram and working of a digital multimeter. Working principle of time interval, frequency and period measurement using universal counter/ frequency counter, time- base stability, accuracy and resolution. Evaluation Process • Board and Marker ICT tools like Projector, online platform like Google Classroom, Google Meet etc. • Sessional Examination • U	Semester	
Number of Classes 14 Details of the topic 5.1: Division of amplitude and wavefront, Young's double slit experiment, Lloyd's Mirror and Fresnel's Bi-prism, Phase change on reflection: Stokes' treatment, Interference in Thin Films: parallel and wedge-shaped films. Newton's Rings: Measurement of wavelength and refractive index. Teaching Tools • Board and Marker Valuation Process • Board and Marker Evaluation Process • Sessional Examination Semester Second Semester Paper Code/Title Paper Code: SEC-2 Paper Title: Basic Instrumentation Skills Allotted Unit/Topic Digital Instruments, Digital Multimeter Number of Classes 4 Principle and working of digital meters. Comparison of analog and digital instruments. Characteristics of digital meter. Working principle of digital voltmeter. Details of the topic • Board and Marker ICT tools like Projector, online platform like Google Classroom, Google Meet etc. Evaluation Process • Board and Marker ICT tools like Projector, online platform like Google Classroom, Google Meet etc. Paper Title: Easting Tools • Board and Marker ICT tools like Projector, online platform like Google Classroom, Google Meet etc. Paper Title: Generic Elective Course • Seminar Presentation/Group Discussion	Paper Code/Title	Paper Title: Waves and Optics
Settion of amplitude and wavefront, Young's double slit experiment, Uoyd's Mirror and Fresnel's Bi-prism, Phase change on reflection: Stokes' treatment, Interference in Thin Films: parallel and wedge-shaped films. Newton's Rings: Measurement of wavelength and refractive index. Teaching Tools Board and Marker Board and Marker ICT tools like Projector, online platform like Google Classroom, Google Meet etc. Sessional Examination Unit Test Seminar Presentation/Group Discussion Semester Second Semester Paper Code/Title Paper Code: SEC-2 Paper Title: Basic Instrumentation Skills Allotted Unit/Topic Number of Classes 4 Principle and working of digital meters. Comparison of analog and digital instruments. Characteristics of digital meter. Working principle of digital voltmeter. Details of the topic Block diagram and working of a digital multimeter. Working principle of time interval, frequency and period measurement using universal counter/ frequency counter, time- base stability, accuracy and resolution. Evaluation Process Board and Marker ICT tools like Projector, online platform like Google Classroom, Google Meet etc. Sessional Examination Unit Test Sessional Examination Unit Test Sessional Examination Unit Test Seminar Presentation/Group Discussi		Interference
Details of the topicLloyd's Mirror and Fresnel's Bi-prism, Phase change on reflection: Stokes' treatment, Interference in Thin Films: parallel and wedge-shaped films. Newton's Rings: Measurement of wavelength and refractive index.Teaching Tools• Board and Marker • ICT tools like Projector, online platform like Google Classroom, Google Meet etc.Evaluation Process• Sessional Examination • Unit Test • Seminar Presentation/Group DiscussionSemesterSecond Semester Paper Code/TitlePaper Code/TitlePaper Code: SEC-2 Paper Title: Basic Instrumentation SkillsAllotted Unit/TopicDigital Instruments, Digital MultimeterNumber of Classes4Petails of the topicBlock diagram and working of a digital meter. Working principle of digital instruments. Characteristics of digital meter. Working principle of digital voltmeter.Details of the topicBlock diagram and working of a digital multimeter. Working principle of time interval, frequency and period measurement using universal counter/ frequency counter, time- base stability, accuracy and resolution.Evaluation Process• Board and Marker ICT tools like Projector, online platform like Google Classroom, Google Meet etc.SemesterSessional Examination • Unit Test • Sessional Examination • Unit Test • Semiar Presentation/Group DiscussionSemesterPaper Code: GEC-2 Paper Code/TitlePaper Code/TitlePaper Code: GEC-2 Paper Title: Generic Elective CourseAllotted Unit/TopicStates of Matter	Number of Classes	14
Teaching ToolsICT tools like Projector, online platform like Google Classroom, Google Meet etc.Evaluation ProcessSessional ExaminationEvaluation ProcessSecond SemesterSemesterSecond SemesterPaper Code/TitlePaper Code: SEC-2 Paper Title: Basic Instrumentation SkillsAllotted Unit/TopicDigital Instruments, Digital MultimeterNumber of Classes4Petails of the topicBlock diagram and working of digital meters. Comparison of analog and digital instruments. Characteristics of digital meter. Working principle of digital volumeter.Details of the topicBlock diagram and working of a digital multimeter. Working principle of time interval, frequency and period measurement using universal counter/ frequency counter, time- base stability, accuracy and resolution.Teaching Tools• Sessional Examination • Unit Test • Seminar Presentation/Group DiscussionSemesterPaper Code: GEC-2 Paper Code: GEC-2 Paper Code: GEC-2 Paper Code: GEC-2 Paper Code: GEC-2 Paper Title: Generic Elective CourseAllotted Unit/TopicStates of Matter	Details of the topic	Lloyd's Mirror and Fresnel's Bi-prism, Phase change on reflection: Stokes' treatment, Interference in Thin Films: parallel and wedge-shaped films. Newton's Rings: Measurement of wavelength and refractive index.
Evaluation Process• Unit Test • Seminar Presentation/Group DiscussionSemesterSecond SemesterPaper Code/TitlePaper Code: SEC-2 Paper Title: Basic Instrumentation SkillsAllotted Unit/TopicDigital Instruments, Digital MultimeterNumber of Classes4Paper SemesterPrinciple and working of digital meters. Comparison of analog and digital instruments. Characteristics of digital meter. Working principle of digital voltmeter.Details of the topicBlock diagram and working of a digital multimeter. Working principle of time interval, frequency and period measurement using universal counter/ frequency counter, time- base stability, accuracy and resolution.Teaching Tools• Board and Marker ICT tools like Projector, online platform like Google Classroom, Google Meet etc.Evaluation Process• Sessional Examination • Unit Test • Seminar Presentation/Group DiscussionSemesterPaper Code: GEC-2 Paper Title: Generic Elective CourseAllotted Unit/TopicStates of Matter	Teaching Tools	• ICT tools like Projector, online platform like Google Classroom, Google Meet etc.
Paper Code/Title Paper Code: SEC-2 Paper Title: Basic Instrumentation Skills Allotted Unit/Topic Digital Instruments, Digital Multimeter Number of Classes 4 Principle and working of digital meters. Comparison of analog and digital instruments. Characteristics of digital meter. Working principle of digital voltmeter. Details of the topic Block diagram and working of a digital multimeter. Working principle of time interval, frequency and period measurement using universal counter/ frequency counter, time- base stability, accuracy and resolution. Teaching Tools Board and Marker ICT tools like Projector, online platform like Google Classroom, Google Meet etc. Sessional Examination Unit Test Seminar Presentation/Group Discussion Semester Paper Code: GEC-2 Paper Title: Generic Elective Course Allotted Unit/Topic States of Matter	Evaluation Process	• Unit Test
Paper Code/Title Paper Code: SEC-2 Paper Title: Basic Instrumentation Skills Allotted Unit/Topic Digital Instruments, Digital Multimeter Number of Classes 4 Principle and working of digital meters. Comparison of analog and digital instruments. Characteristics of digital meter. Working principle of digital voltmeter. Details of the topic Block diagram and working of a digital multimeter. Working principle of time interval, frequency and period measurement using universal counter/ frequency counter, time- base stability, accuracy and resolution. Teaching Tools Board and Marker ICT tools like Projector, online platform like Google Classroom, Google Meet etc. Sessional Examination Unit Test Seminar Presentation/Group Discussion Semester Paper Code: GEC-2 Paper Title: Generic Elective Course Allotted Unit/Topic States of Matter	Semester	Second Semester
Paper Code/TitlePaper Title: Basic Instrumentation SkillsAllotted Unit/TopicDigital Instruments, Digital MultimeterNumber of Classes4Principle and working of digital meters. Comparison of analog and digital instruments. Characteristics of digital meter. Working principle of digital voltmeter.Details of the topicBlock diagram and working of a digital multimeter. Working principle of time interval, frequency and period measurement using universal counter/ frequency counter, time- base stability, accuracy and resolution.Teaching Tools• Board and Marker ICT tools like Projector, online platform like Google Classroom, Google Meet etc.Evaluation Process• Sessional Examination • Unit Test • Seminar Presentation/Group DiscussionPaper Code/TitlePaper Code: GEC-2 Paper Title: Generic Elective CourseAllotted Unit/TopicStates of Matter	Semester	
Number of Classes4Principle and working of digital meters. Comparison of analog and digital instruments. Characteristics of digital meter. Working principle of digital voltmeter.Details of the topicBlock diagram and working of a digital multimeter. Working principle of time interval, frequency and period measurement using universal counter/ frequency counter, time- base stability, accuracy and resolution.Teaching Tools• Board and Marker ICT tools like Projector, online platform like Google Classroom, Google Meet etc.Evaluation Process• Sessional Examination • Unit Test • Seminar Presentation/Group DiscussionSemesterPaper Code: GEC-2 Paper Title: Generic Elective CourseAllotted Unit/TopicStates of Matter		Paper Title: Basic Instrumentation Skills
Details of the topicPrinciple and working of digital meters. Comparison of analog and digital instruments. Characteristics of digital meter. Working principle of digital voltmeter.Details of the topicBlock diagram and working of a digital multimeter. Working principle of time interval, frequency and period measurement using universal counter/ frequency counter, time- base stability, accuracy and resolution.Teaching Tools• Board and Marker ICT tools like Projector, online platform like Google Classroom, Google Meet etc.Evaluation Process• Sessional Examination • Unit Test • Seminar Presentation/Group DiscussionSemesterPaper Code: GEC-2 Paper Title: Generic Elective CourseAllotted Unit/TopicStates of Matter		
Details of the topicinstruments. Characteristics of digital meter. Working principle of digital voltmeter.Details of the topicBlock diagram and working of a digital multimeter. Working principle of time interval, frequency and period measurement using universal counter/ frequency counter, time- base stability, accuracy and resolution.Teaching Tools• Board and Marker 	Number of Classes	•
Teaching ToolsICT tools like Projector, online platform like Google Classroom, Google Meet etc.Evaluation Process• Sessional ExaminationEvaluation Process• Seminar Presentation/Group DiscussionSemesterSeminar Presentation/Group DiscussionPaper Code/TitlePaper Code: GEC-2 Paper Title: Generic Elective CourseAllotted Unit/TopicStates of Matter	Details of the topic	instruments. Characteristics of digital meter. Working principle of digital voltmeter.Block diagram and working of a digital multimeter. Working principle of time interval, frequency and period measurement using universal counter/ frequency
Evaluation Process Unit Test Seminar Presentation/Group Discussion Semester Paper Code: GEC-2 Paper Code/Title Paper Code: GEC-2 Paper Title: Generic Elective Course Allotted Unit/Topic States of Matter	Teaching Tools	ICT tools like Projector, online platform like Google Classroom,
Paper Code/Title Paper Code: GEC-2 Paper Title: Generic Elective Course Allotted Unit/Topic States of Matter	Evaluation Process	• Unit Test
Paper Code/Title Paper Code: GEC-2 Paper Title: Generic Elective Course Allotted Unit/Topic States of Matter		
Paper Code/Title Paper Title: Generic Elective Course Allotted Unit/Topic States of Matter	Semester	
L	_	Paper Title: Generic Elective Course
Number of Classes 3		States of Matter
	Number of Classes	3

Teaching Tools Evaluation Process	 Overview of the different states of matter: Solid, Liquid, Gas and Plasma Board and Marker ICT tools like Projector online platform like Google Classroom, Google Meet etc. Sessional Examination
Evaluation Process	Sessional Examination
	Unit TestSeminar Presentation/Group Discussion
Semester	Forth Semester (Honours)
Paper Code/Title	Paper Code: PHYSICS-C-IX Paper Title: ELEMENTS OF MODERN PHYSICS
Allotted Unit/Topic	Nuclear size and Structure, Nuclear Reaction and Lasers.
Number of Classes	17
Details of the topic	 Nuclear size and structure: Size and structure of atomic nucleus and its relation with atomic weight; Impossibility of an electron being in the nucleus as a consequence of the uncertainty principle. Nature of nuclear force, NZ graph, Liquid Drop model: semi-empirical mass formula and binding energy, Nuclear Shell Model and magic numbers. Radioactivity: stability of the nucleus; Law of radioactive decay; Mean life and half-life; Alpha decay; Beta decay- energy released, spectrum and Pauli's prediction of neutrino; Gamma ray emission, energy-momentum conservation: electron-positron pair creation by gamma photons in the vicinity of a nucleus. Nuclear Reaction: Fission and fusion- mass deficit, relativity and generation of energy; Fission - nature of fragments and emission of neutrons. Nuclear reactor: slow neutrons interacting with Uranium 235; Fusion and thermonuclear reactions driving stellar energy (brief qualitative discussions). Lasers: Einstein's A and B coefficients. Metastable states. Spontaneous and Stimulated emissions. Optical Pumping and Population Inversion. Three-Level and Four-Level Lasers. Ruby Laser and He-Ne Laser. Basic lasing.
Teaching Tools	 Board and Marker ICT tools like Projector, online platform like Google Classroom, Google Meet etc. Sessional Examination
Evaluation Process	 Sessional Examination Unit Test Seminar Presentation/Group Discussion

Semester	Fourth Semester (Generic)
Paper Code/Title	Paper Code: GE-4 Paper Title: WAVES AND OPTICS
Allotted Unit/Topic	Wave and Optics, Interference
Number of Classes	14
Details of the topic	 Wave Optics: Electromagnetic nature of light. Definition and Properties of wave front. Huygens Principle. Interference: Interference: Division of amplitude and division of wavefront. Young's Double Slit experiment. Lloyd's Mirror and Fresnel's Biprism. Phase change on reflection: Stokes' treatment. Interference in Thin Films: parallel and wedge-shaped films. Fringes of equal inclination (Haidinger Fringes); Fringes of equal thickness (Fizeau Fringes). Newton's Rings: measurement of wavelength and refractive index.
Teaching Tools	 Board and Marker ICT tools like Projector, online platform like Google Classroom, Google Meet etc.
Evaluation Process	 Sessional Examination Unit Test Seminar Presentation/Group Discussion

Semester	Sixth Semester (Honours)
Paper Code/Title	Paper Code: PHYSICS-DSE-4 Paper Title: NANO MATERIALS AND APPLICATIONS
Allotted Unit/Topic	Synthesis of nanostructure materials, Characterization, Optical properties, Electron transport, Applications.
Number of Classes	50
Details of the topic	 Synthesis of nanostructure materials: Top down and Bottom up approach, Photolithography. Ball milling. Gas phase condensation. Vacuum deposition. Physical vapor deposition (PVD): Thermal evaporation, E-beam evaporation, Pulsed Laser deposition. Chemical vapor deposition (CVD). Sol-Gel. Electro deposition. Spray pyrolysis. Hydrothermal synthesis. Preparation through colloidal methods. MBE growth of quantum dot Characterization: X- ray diffraction, Optical Microscopy, Scanning electron Microscopy , Transmission Electron Microscopy , Atomic Force Microscopy, Scanning Tunneling Microscopy. Optical properties: Coulomb interaction in nanostructures. Concept of dielectric constant for nanostructures and charging of nanostructure. Quasi-particles and excitons.

	Excitons in direct and indirect band gap semiconductor nanocrystals. Quantitative treatment of quasi-particles and excitons, charging effects. Radiative Processes: General formalization-absorption, emission and luminescence, Optical properties of hetero structures and nano structures.
	Electron transport: Carrier transport in nanostrcutures. Coulomb blockade effect, thermionic emission, tunneling and hoping conductivity. Defects and impurities: Deep level and surface defects.
	Applications: Applications of nanoparticles, quantum dots, nanowires and thin films for photonic devices (LED, solar cells). Single electron transfer devices (no derivation). CNT based transistors. Nanomaterial Devices: Quantum dots heterostructure lasers, optical switching and optical data storage. Magnetic quantum well; magnetic dots - magnetic data storage. Micro Electromechanical Systems (MEMS), Nano Electromechanical Systems (NEMS).
Teaching Tools	 Board and Marker ICT tools like Projector, online platform like Google Classroom, Google Meet etc.
Evaluation Process	 Sessional Examination Unit Test Seminar Presentation/Group Discussion

Vue Ste

HOD Department of Physics Gargaon College

SIGNATURE

HOD Physics Gargaon College

(Aler

SIGNATURE

Jayanta Sonowal Dept of Physics

Course: B. Sc.

Session: Odd semester 2023

Subject: PHYSICS

Name of the Teacher: DR. GITASHRI ARANDHARA

Methods to be applied: Lecture, analytical and activity method, interaction and discussion. **Teaching Tools**: Board and Marker, ICT tools like Projector, online platform like zoom, Google Classroom etc.

Evaluation Process: Sessional Examination, Unit Test, Google Class Room Quiz, Seminar Presentation/Group Discussion/Micro Teaching

Semester	First Semester (Major) FYUGP	
Paper Code/Title	Paper Title: Mechanics and Properties of Matter	
	Paper Code: C 1	
Allotted Unit/Topic	Unit 1: Newtonian Mechanics	
Number of Classes	12	
Details of the topic	Principle of Conservation of Angular Momentum, Rotation about a fixed	
	axis, Moment of Inertia, Calculation of Moment of Inertia for rectangular,	
	cylindrical and spherical bodies, Kinetic Energy of Rotation, Motion	
	involving both translation and rotation.	
Semester	First Semester (Minor) FYUGP	
Paper Code/Title	Paper Title: Mechanics	
	Paper Code: Minor 1	
Allotted Unit/Topic	Unit 1: Newtonian Mechanics	
Number of Classes	10	
Details of the topic	Principle of Conservation of Angular Momentum, Rotation about a fixed	
	axis, Moment of Inertia, Calculation of Moment of Inertia for rectangular, cylindrical and spherical bodies, Kinetic Energy of Rotation, Motion	
	involving both translation and rotation.	
Semester	First Semester FYUGP	
Paper Code/Title	Paper Title: Electrical circuits and Network Skills	
	Paper Code: SEC 1	
Allotted Unit/Topic	Unit 2: Understanding Electrical Circuit	
	Unit 3: Electrical Drawing and Symbols	
	Demonstration and Laboratory	
Number of Classes	5 5	
Details of the topic	Unit2: Single-phase and three- phase alternating current Reading Schematics. Ladder diagrams. sources. Rules to analyze AC sourced electrical circuits. Real, imaginary and complex power components of AC source. Power factor. Saving energy and elements and identifying current flow and money.	

Semester	First Somestor EVICD	
	First Semester FYUGP	
Paper Code/Title	Paper Title: Evolution of Science Paper Code: GEC 1	
Allotted Unit/Topic	Unit 1 Unit 3	
Number of Classes	7	8
Details of the topic	Contributions of Aristotle, Galile	
Details of the topic		technology.Electronic age and birth of
		computers. Laser and optical evolution.
	1	Contemporary science and India's
		contribution.
	Gravitation	
Semester	Third Semester (Honours)	
Paper Code/Title	Paper Title: THERMAL PH	VSICS (THEORY)
raper Coue/ The	Paper Code: PHYSICS-C VI	
Allotted Unit/Topic	Zeroth and First Law of Thermodynar	nics
Number of Classes	8	
Details of the topic		namic Variables, Thermodynamic Equilibrium,
		Concept of Temperature, Concept of Work & of Thermodynamics and its differential form,
		is processes, Applications of First Law: General
	Relation between CP and CV, W	Vork Done during Isothermal and Adiabatic
Allottod Unit/Tonio	Processes, Compressibility and Exp. Second Law of	
Allotted Unit/Topic	Thermodynamics	Entropy
Number of Classes	10	7
Details of the topic	with examples. Conversion of Work into Heat and Heat into Work. Heat Engines. Carnot's Cycle, Carno engine & efficiency. Refrigerator & coefficient of performance, 2 nd Law of Thermodynamics: Kelvin-Planck and Clausius Statements and their Equivalence. Carnot's Theorem Applications of Second Law of Thermodynamics: Thermodynamic Scale of Temperature and its Equivalence to Perfect Gas Scale.	Thermodynamics in terms of Entropy. Entropy of a perfect gas. Principle of Increase of Entropy. Entropy Changes in Reversible and Irreversible processes with examples. Entropy of the Universe. Entropy Changes in Reversible and Irreversible Processes. Principle of Increase of Entropy. Temperature–Entropy diagrams for Carnot's Cycle. Third Law of Thermodynamics.
Semester	Third Semester (Generic)	
Paper Code/Title	Paper Title: Thermal Physics and Paper Code: GE-3	Statistical Mechanics
Allotted Unit/Topic	Theory of Radiation	
Number of Classes	6	
Details of the topic	of Planck's law, Deduction of Wien Boltzmann Law and Wien's displac	bution, Concept of Energy Density, Derivation 's distribution law, Rayleigh-Jeans Law, Stefan ement law from Planck's Law.
Semester	Fifth Semester (Honours)	
Paper Code/Title	Paper Title: SOLID STATE PHYSICS (THEORY) Paper Code: PHYSICS-C-XII	
Allotted Unit/Topic	Crystal Structure	

Number of Classes	12	
Details of the topic	Solids: Amorphous and Crystalline Materials. Lattice Translation Vectors. Lattice with a Basis – Central and Non-Central Elements. Unit Cell. Miller Indices. Reciprocal Lattice. Types of Lattices. Brillouin Zones. Diffraction of X-rays by Crystals. Bragg's Law. Atomic and Geometrical Factor.	
Allotted Unit/Topic	Elementary Lattice Dynamics	
Number of Classes	10	
Details of the topic	Lattice Vibrations and Phonons: Linear Monoatomic and Diatomic Chains. Acoustical and Optical Phonons. Qualitative Description of the Phonon Spectrum in Solids. Dulong and Petit's Law, Einstein and Debye theories of specific heat of solids. T3 law	
Allotted Unit/Topic	Magnetic Properties of Matter	Superconductivity
Number of Classes	8	6
Details of the topic	Dia-, Para-, Ferri- and Ferromagnetic Materials. Classical Langevin Theory of dia– and Paramagnetic Domains. Quantum Mechanical Treatment of Paramagnetism. Curie's law, Weiss's Theory of Ferromagnetism and Ferromagnetic Domains. Discussion of B-H Curve. Hysteresis and Energy Loss.	Temperature. Critical magnetic field. Meissner effect. Type I and type II Superconductors, London's Equation and Penetration Depth. Isotope effect.

Course: B. Sc.

Session: Even semester 2024

Subject: PHYSICS

Name of the Teacher: DR. GITASHRI ARANDHARA

Methods to be applied: Lecture, analytical and activity method, interaction and discussion. **Teaching Tools**: Board and Marker, ICT tools like Projector, online platform like zoom, Google Classroom etc.

Evaluation Process: Sessional Examination, Unit Test, Google Class Room Quiz, Seminar Presentation/Group Discussion/Micro Teaching

Semester	Second Semester (Honours)		
Paper Code/Title	Paper Title: Waves and Optics		
	Paper Code: C-2		
Allotted Unit/Topic	Unit 2: Wave Motion		
Number of Classes	6	5	
Details of the topic	2.1: Plane and Spherical Waves, Longitudinal and Transverse Waves, Plane Progressive (Travelling) Waves, Wave Equation, Particle and Wave Velocities, Differential Equation of a Wave, Pressure of a Longitudinal Wave, Energy Transport, Intensity of Wave.	2.2: Velocity of Transverse Vibrations of Stretched Strings, Velocity of Longitudinal Waves in a Fluid in a Pipe, Newton's Formula for Velocity of Sound, Laplace's Correction.	
Allotted Unit/Topic	Unit 4: Wave optics		
Number of Classes	3		
Details of the topic	Electromagnetic nature of light, definition and properties of wave front, Huygens principle, Temporal and Spatial coherence.		
Semester	Second Semester (Minor) FYUGP		
Paper Code/Title	Paper Title: Waves and Optics Paper Code: Minor 2		
Allotted Unit/Topic	Unit 2: Wave Motion		
Number of Classes	4	5	
Details of the topic	2.1: Plane and Spherical Waves, Longitudinal and Transverse Waves, Plane Progressive (Travelling) Waves, Wave Equation, Particle and Wave Velocities, Differential Equation of a Wave, Pressure of a Longitudinal Wave, Energy Transport, Intensity of Wave.	Fluid in a Pipe, Newton's Formula for Velocity of Sound, Laplace's Correction.	

Paper Code/Title	Paper Title: Materials Today Paper Code: GEC 2	
Allotted Unit/Topic	Unit IV: Trends in Advanced Materials	
Number of Classes	15	
Details of the topic	Breakthroughs in Materials Development Overview of Advanced Materials: Semiconductors, Biomaterials, Smart Materials (Materials of the Future), Nano-structured Materials	
Semester	Fourth Semester (Honours)	
Paper Code/Title	Paper Title: ELEMENTS OF MODERN PHYSICS (THEORY) Paper Code: PHYSICS-C IX	
Allotted Unit/Topic	I II	
Number of Classes	14 5	
Details of the topic	Planck's quantum, Planck's Position measurement- gamma ray constant and light as a collection of photons; Blackbody Radiation: Quantum theory of Light; Photo- electric effect and Compton scattering. De Broglie wavelength and matter waves; Davisson-Germer experiment. Wave description of particles by wave packets. Group and Phase velocities and relation between them. Two-Slit experiment with electrons. Probability. Wave amplitude and wave functions	
Allotted Unit/Topic	III IV	
Number of Classes	10 10	
Details of the topic	Two slit interference experiment with photons, atoms and particles: linear superposition principle as a consequence; Matter waves and wave amplitude; Schrodinger equation for non-relativistic particles; Momentum and Energy operators; stationary states; physical interpretation of a wave function, probabilities and normalization; Probability and probability current densities in one dimension.	
Semester	Fourth Semester (Generic)	
Paper Code/Title	Paper Title: W A V E S A N D O P T I C S (THEORY) Paper Code: PHYSICS-GE-4	
Allotted Unit/Topic	Michelson's Interferometer Polarization	
Number of Classes	5 5	
Details of the topic	Idea of form of fringes (no theory Transverse nature of light waves. Plane needed), Determination of polarized light – production and analysis. wavelength, Wavelength difference, Circular and elliptical polarization. Refractive index, and Visibility of fringes.	

Semester	Sixth Semester (Honours)
Paper Code/Title	Paper Title: ELECTROMAGNETIC THEORY
	Paper Code: PHYSICS-C-XIII

Allotted Unit/Topic	I - Maxwell Equations		
Number of Classes	12		
Details of the topic	Review of Maxwell's equations. Displacement Current. Vector and Scalar Potentials. Gauge Transformations: Lorentz and Coulomb Gauge. Boundary Conditions at Interface between Different Media. Wave Equations. Plane Waves in Dielectric Media. Poynting Theorem and Poynting Vector. Electromagnetic (EM) Energy Density. Physical Concept of Electromagnetic Field Energy Density, Momentum Density and Angular Momentum Density.		
Paper Code/Title		AND PARTICLE PHYSICS (T	HEORY)
Allotted Unit/Topic	Paper Code: PHYSICS V - Interaction of Nuclear Radiation with matter	-DSE 3 VI- Detector for Nuclear Radiations	VII- Particle Accelerators
Number of Classes	8	8	5
Details of the topic	Energy loss due to ionization (Bethe-Block formula), energy loss of electrons, Cerenkov radiation. Gamma ray interaction through matter, photoelectric effect, Compton scattering, pair production, neutron interaction with matter.	Gas detectors: estimation of electric field, mobility of particle, for ionization chamber and GM Counter. Basic principle of Scintillation Detectors and construction of photo-multiplier tube (PMT). Semiconductor Detectors (Si and Ge) for charge particle and photon detection (concept of charge carrier and mobility), neutron detector.	Accelerator facility available in India: Van-de Graaff generator (Tandem accelerator), Linear accelerator, Cyclotron, Synchrotrons
Paper Code/Title		TERIALS AND APPLICATIO	N
Allotted Unit/Topic	Paper Code: PHYSICS I - Nanoscale systems	DDSE -4	
Number of Classes	1 - Ivanoscale systems		
Details of the topic	Length scales in Physics, Nanostructures: 1D, 2D and 3D nanostructures (nanodots, thin films, nanowires, nanorods), Band structure and density of states of materials at nanoscale, Size Effects in nano systems, Quantum confinement: Applications of Schrodinger equation- Infinite potential well, potential step, potential box, quantum confinement of carriers in 3D, 2D, 1D nanostructures and its consequences.		

Buc

HoD Dept of Physics HOD Department of Physics Gargaon College

Gitashri" Arandhara Signature

TEACHING PLAN FOR ODD SEMESTER

Course: B. Sc.

Session: Odd semester 2023

Subject: Physics Name of the Teacher: DR. BIDYUT BIKASH HAZARIKA Designation: Assistant Professor

Semester	First Semester (Major)	
	Paper Code: C - 1	
Paper Code/Title	Paper Title: MECHANICS AND PROPERTIES OF MATTER	
Allotted Unit/Topic	Special Theory of Relativity	
Number of Classes	16	
Details of the topic	Michelson-Morley Experiment and its outcome, Postulates of Special Theory of Relativity, Lorentz Transformations, Simultaneity and order of events, Lorentz contraction, Time dilation. Relativistic Transformation of Velocity, Frequency and Wave-number, Relativistic addition of Velocities, Variation of Mass with Velocity, Massless Particles, Mass-energy Equivalence. Relativistic Kinematics, Transformation of Energy and Momentum, Relativistic Doppler effect.	
Teaching Tools	 Board and Marker ICT tools like Projector, online platform like Google Classroom, Google Meet etc. 	
Evaluation Process	 Sessional Examination Unit Test Google Class Room Quiz Seminar Presentation/Group Discussion 	
Semester	First Semester (Minor)	
Paper Code/Title	Paper Code: MINOR 1 Paper Title: MECHANICS	
Allotted Unit/Topic	Special Theory of Relativity	
Number of Classes	15	
Details of the topic	Michelson-Morley Experiment and its outcome, Postulates of Special Theory of Relativity, Lorentz Transformations, Simultaneity and order of events, Lorentz contraction, Time dilation. Relativistic addition of Velocities, Variation of Mass with Velocity, Mass-energy Equivalence.	
Teaching Tools	 Board and Marker ICT tools like Projector, online platform like Google Classroom, Google Meet etc. 	

Evaluation Process	 Sessional Examination Unit Test Google Class Room Quiz Seminar Presentation/Group Discussion 	
Semester	First Semester (Generic Elective Courses)	
Paper Code/Title	Paper Code: GEC - 1	

	Paper Title: Generic Elective Course	
Allotted Unit/Topic	Unit: 2	
Number of Classes	6	
Details of the topic	Nineteenth century and beginning of modern science: Developments of electricity and magnetism	
Teaching Tools	 Board and Marker ICT tools like Projector, online platform like Google Classroom, Google Meet etc. 	
Evaluation Process	 Sessional Examination Unit Test Google Class Room Quiz Seminar Presentation/Group Discussion 	
Semester	First Semester (Skill Enhancement Course)	
Paper Code/Title	SEC - 1	
Allotted Unit/Topic		
Number of Classes	Solid State Devices, Electrical Protections 3	
Details of the topic	3Resistors, inductors and capacitors, Diode and rectifiers, Components in series or in shunt, Response of Inductors and capacitors with AC or DC sources.Relays, fuses and disconnect switches, Circuit breakers, Overload devices. Ground-fault protection. Grounding and isolating. Phase reversal. Surge 	
Teaching Tools	 Board and Marker ICT tools like Projector, online platform like Google Classroom, Google Meet etc. 	
Evaluation Process	 Sessional Examination Unit Test Google Class Room Quiz Seminar Presentation/Group Discussion 	
Semester	Third Semester (Honours)	
	Paper Code: PHYSICS-C III	
Paper Code/Title	Paper Title: MATHEMATICAL PHYSICS-II	
Allotted Unit/Topic	Fourier Series, Frobenius Method and Special Functions, Some Special Integrals	
Number of Classes	38	

Details of the topic	 Fourier Series: Periodic functions. Orthogonality of sine and cosine functions, Dirichlet Conditions (Statement only). Expansion of periodic functions in a series of sine and cosine functions and determination of Fourier coefficients. Complex representation of Fourier series. Expansion of functions with arbitrary period. Expansion of non-periodic functions over an interval. Even and odd functions and their Fourier expansions. Application. Summing of Infinite Series. Term-by-Term differentiation and integration of Fourier Series. Parseval Identity. Frobenius Method and Special Functions: Singular Points of Second Order Linear Differential Equations and their importance. Frobenius method and its applications to differential equations. Legendre, Bessel, Hermite and Laguerre Differential Equations. Properties of Legendre Polynomials: Rodrigues Formula, Generating Function, Orthogonality. Simple recurrence relations. Expansion of function in a series of Legendre Polynomials. Bessel Functions of the First Kind: Generating Function, simple recurrence relations. Zeros of Bessel Functions (Jo(x) and J1(x)) and Orthogonality. Some Special Integrals: Beta and Gamma Functions. Error Function (Probability Integral). 	
Teaching Tools	 Board and Marker ICT tools like Projector, online platform like Google Classroom, Google Meet etc. 	
Evaluation Process	 Sessional Examination Unit Test Google Class Room Quiz Seminar Presentation/Group Discussion 	
Semester	Third Semester (Generic)	
Paper Code/Title	Paper Code: GE-3 Paper Title: THERMAL PHYSICS AND STATISTICAL MECHANICS	
Allotted Unit/Topic	Thermodynamic Description of system	
Number of Classes	22	
Details of the topic	Thermodynamic Description of system: Zeroth Law of thermodynamics and temperature. First law and internal energy, conversion of heat into work, Various Thermodynamical Processes, Applications of First Law: General Relation between CP and CV, Work Done during Isothermal and Adiabatic Processes, Compressibility and Expansion Coefficient, Reversible and irreversible processes, Second law and Entropy, Carnot's cycle & theorem, Entropy changes in reversible & irreversible processes, Entropy-temperature diagrams, Third law of thermodynamics, Unattainability of absolute zero.	
Teaching Tools	 Board and Marker ICT tools like Projector, online platform like Google Classroom, Google Meet etc. 	

Evaluation Process	 Sessional Examination Unit Test Google Class Room Quiz Seminar Presentation/Group Discussion
Semester	Fifth Semester (Honours)
Paper Code/Title	Paper Code: PHYSICS-DSE I Paper Title: CLASSICAL DYNAMICS
Allotted Unit/Topic	Special Theory of Relativity, Fluid Dynamics
Number of Classes	43
Details of the topic	Special Theory of Relativity : Postulates of Special Theory of Relativity. Lorentz Transformations. Minkowski space. The invariant interval, light cone and world lines. Space-time diagrams. Time -dilation, length contraction and twin paradox. Four-vectors: space-like, time-like and light-like. Four-velocity and acceleration. Metric and alternating tensors. Four-momentum and energy-momentum relation. Doppler effect from a four-vector perspective. Concept of four-force. Conservation of four-momentum. Relativistic kinematics. Application to two-body decay of an unstable particle. Fluid Dynamics: Density ρ and pressure P in a fluid, an element of fluid and its velocity, continuity equation and mass conservation, stream-lined motion, laminar flow, Poiseuille's equation for flow of a liquid through a pipe, Navier-Stokes equation, qualitative description of turbulence, Reynolds number.
Teaching Tools	 Board and Marker ICT tools like Projector, online platform like Google Classroom, Google Meet etc.
Evaluation Process	 Sessional Examination Unit Test Google Class Room Quiz Seminar Presentation/Group Discussion

Semester	Fifth Semester (Honours)
Paper Code/Title	Paper Code: PHYSICS-DSE II Paper Title: ASTRONOMY AND ASTROPHYSICS
Allotted Unit/Topic	The Sun, Stellar spectra and classification Structure
Number of Classes	26
Details of the topic	The sun (Solar Parameters, Solar Photosphere, Solar Atmosphere, Chromosphere. Corona, Solar Activity, Basics of Solar Magneto- hydrodynamics. Helioseismology). The solar family (Solar System: Facts and Figures, Origin of the Solar System: The Nebular Model, Tidal Forces and Planetary Rings, ExtraSolar Planets.

	Stellar spectra and classification Structure (Atomic Spectra Revisited, Stellar Spectra, Spectral Types and Their Temperature Dependence, Black Body Approximation, H R Diagram, Luminosity Classification) Stellar spectra and classification Structure (Atomic Spectra Revisited, Stellar Spectra, Spectral Types and Their Temperature Dependence, Black Body Approximation, H R Diagram, Luminosity Classification)
Teaching Tools	 Board and Marker ICT tools like Projector, online platform like Google Classroom, Google Meet etc.
Evaluation Process	 Sessional Examination Unit Test Google Class Room Quiz Seminar Presentation/Group Discussion

TEACHING PLAN FOR EVEN SEMESTER

Course: B. Sc.

Session: Even semester 2024

Subject: Physics Name of the Teacher: DR. BIDYUT BIKASH HAZARIKA Designation: Assistant Professor

Semester	Second Semester (Major)
Paper Code/Title	Paper Code: C - 2 Paper Title: WAVES AND OPTICS
Allotted Unit/Topic	Diffraction
Number of Classes	15
Details of the topic	 6.1: Kirchhoff's Integral Theorem, Fresnel-Kirchhoff's Integral formula (Qualitative discussion only) 6.2: Fraunhofer Diffraction: Single slit, Circular aperture. Resolving Power of a telescope, Double slit, Multiple slits. Diffraction grating, Resolving power of grating. 6.3: Fresnel Diffraction: Fresnel's Assumptions. Fresnel's Half-Period Zones for Plane Wave. Explanation of Rectilinear Propagation of Light. Theory of a Zone Plate: Multiple Foci of a Zone Plate. Fresnel's Integral, Fresnel diffraction pattern of a straight edge, a slit and a wire.
Teaching Tools	 Board and Marker ICT tools like Projector, online platform like Google Classroom, Google Meet etc.

Evaluation Process	 Sessional Examination Unit Test Google Class Room Quiz Seminar Presentation/Group Discussion
Semester	Second Semester (Minor)

	Paper Code: Minor 2
Paper Code/Title	Paper Title: WAVES AND OPTICS
Allotted Unit/Topic	Wave Optics, Interference
Number of Classes	14
Details of the topic	 Electromagnetic nature of light, definition and properties of wave front, Huygens principle, Temporal and Spatial coherence 5.2: Michelson Interferometer- (i) Idea of form of fringes (No theory required), (ii) Determination of Wavelength, (iii) Wavelength Difference, (iv) Refractive Index and (v) Visibility of Fringes. Fabry-Perot interferometer.
Teaching Tools	 Board and Marker ICT tools like Projector, online platform like Google Classroom, Google Meet etc.
Evaluation Process	 Sessional Examination Unit Test Google Class Room Quiz Seminar Presentation/Group Discussion
Semester	Second Semester (Generic Elective Course)
Paper Code/Title	Paper Code: GEC-2 Paper Title: MATERIALS TODAY
Allotted Unit/Topic	Classification of Engineering Materials
Number of Classes	13
Details of the topic	Metals & Alloys, Non-Metals, Ceramics, Polymers, Composites etc. with examples and applications Uses, Performance, Composition & Structure; Physical and Chemical properties; Processing & Synthesis of various classes of materials
Teaching Tools	 Board and Marker ICT tools like Projector, online platform like Google Classroom, Google Meet etc.
Evaluation Process	 Sessional Examination Unit Test Google Class Room Quiz Seminar Presentation/Group Discussion
Semester	Forth Semester (Honours)
Paper Code/Title	Paper Code: PHYSICS-C VIII Paper Title: MATHEMATICAL PHYSICS-III
Allotted Unit/Topic	Integrals Transforms, Laplace Transforms
Number of Classes	30
Details of the topic	Integrals Transforms : Fourier Transforms: Fourier Integral theorem. Fourier Transform. Examples. Fourier transform of trigonometric, Gaussian, finite wave train & other functions. Representation of Dirac delta function as a

	 Fourier Integral. Fourier transform of derivatives, Inverse Fourier transform, Convolution theorem. Properties of Fourier transforms (translation, change of scale, complex conjugation, etc.). Three dimensional Fourier transforms with examples. Application of Fourier Transforms to differential equations: One dimensional Wave and Diffusion/Heat Flow Equations. Laplace Transforms: Laplace Transform (LT) of Elementary functions. Properties of LTs: Change of Scale Theorem, Shifting Theorem. LTs of 1st and 2nd order Derivatives and Integrals of Functions, Derivatives and Integrals of LTs. LT of Unit Step function, Dirac Delta function, Periodic Functions. Convolution Theorem. Inverse LT. Application of Laplace Transforms to 2nd order Differential Equations: Damped Harmonic Oscillator, Simple Electrical Circuits, Coupled differential equations of 1st order. Solution of heat flow along infinite bar using Laplace transform.
Teaching Tools	• ICT tools like Projector, online platform like Google Classroom, Google Meet etc.
Evaluation Process	 Sessional Examination Unit Test Google Class Room Quiz Seminar Presentation/Group Discussion
Formation	Fourth Someston (Conorio)
Semester	Fourth Semester (Generic)
Paper Code/Title	Paper Code: GE-4 Paper Title: WAVES AND OPTICS
Allotted Unit/Topic	Diffraction
Number of Classes	14
Details of the topic	Diffraction : Fraunhofer diffraction- Single slit; Double Slit. Multiple slits and Diffraction grating. Fresnel Diffraction: Half-period zones. Zone plate. Fresnel Diffraction pattern of a straight edge, a slit and a wire using half-period zone analysis.
Teaching Tools	 Board and Marker ICT tools like Projector, online platform like Google Classroom, Google Meet etc.
Evaluation Process	 Sessional Examination Unit Test Google Class Room Quiz Seminar Presentation/Group Discussion

Semester	Sixth Semester (Honours)
Paper Code/Title	Paper Code: PHYSICS-C XIII Paper Title: ELECTROMAGNETIC THEORY
Allotted Unit/Topic	EM Wave Propagation in Unbounded Media, EM Wave in Bounded Media, Wave Guides

Number of Classes	28
Details of the topic	 EM Wave Propagation in Unbounded Media: Plane EM waves through vacuum and isotropic dielectric medium, transverse nature of plane EM waves, refractive index and dielectric constant, wave impedance. Propagation through conducting media, relaxation time, skin depth. Wave propagation through dilute plasma, electrical conductivity of ionized gases, plasma frequency, refractive index, skin depth, application to propagation through ionosphere. EM Wave in Bounded Media: Boundary conditions at a plane interface between two media. Reflection & Refraction of plane waves at plane interface between two dielectric media-Laws of Reflection & Refraction. Fresnel's Formulae for perpendicular & parallel polarization cases, Brewster's law. Reflection & Transmission coefficients. Total internal reflection, evanescent waves. Metallic reflection (normal Incidence) Wave Guides: Planar optical wave guides. Planar dielectric wave guide. Condition of continuity at interface. Phase shift on total reflection. Eigenvalue equations. Phase and group velocity of guided waves , Field energy and power transmission.
Teaching Tools	 Board and Marker ICT tools like Projector, online platform like Google Classroom, Google Meet etc.
Evaluation Process	 Sessional Examination Unit Test Google Class Room Quiz Seminar Presentation/Group Discussion
Semester	Sixth Semester (Honours)
Paper Code/Title	Paper Code: PHYSICS-C XIV Paper Title: STATISTICAL MECHANICS
Allotted Unit/Topic	Bose-Einstein Statistics, Fermi-Dirac Statistics
Number of Classes	28
Details of the topic	 Bose-Einstein Statistics: B-E distribution law, Thermodynamic functions of a strongly Degenerate Bose Gas, Bose Einstein condensation, properties of liquid He (qualitative description), Radiation as a photon gas and Thermodynamic functions of photon gas. Bose derivation of Planck's law. Fermi-Dirac Statistics: Fermi-Dirac Distribution Law, Thermodynamic functions of a completely and strongly Degenerate Fermi Gas, Fermi Energy, Electron gas in a Metal, Specific Heat of Metals, Relativistic Fermi gas, White Dwarf Stars, Chandrasekhar Mass Limi
Teaching Tools	 Board and Marker ICT tools like Projector, online platform like Google Classroom, Google Meet etc.

Evaluation Process	Sessional ExaminationUnit Test
	Google Class Room QuizSeminar Presentation/Group Discussion

Bone

HOD Department of Physics Gargaon College

SIGNATURE Dr. Bidyut Bikash Hazarika Dept of Physics

HOD Physics