

TEACHING PLAN DEPARTMENT OF CHEMISTRY JULY 2023- JUNE 2024

Course: B. Sc.

Session: Odd semester 2023

Subject: CHEMISTRY

Name of the Teacher: DR. ANNA GOGOI

Methods to be applied: Lecture, analytical and activity method, interaction and discussion. **Teaching Materials:** Green Board, Chalk Pencil, Duster, Book, Journal, Laptop, Projector.

	Allotted	No. of Class	Detail of the topics to be taught	No. of
PaperCode/Ti			& class required	tutorial
tle	Unit/ Topic	required	_	s
CHEMISTRY	Unit II: Liquid State	6	• Qualitative treatment of the structure of the liquid state [1]	3
CHMC1			 Radial distribution function [1] physical properties of liquids: 	
			vapour pressure, Surface tension, viscosity [3] • Explanation of cleansing	
			action of detergents [1]Newtonian and non-	
			Newtonian liquid, liquid crystals.[1]	
	UNIT:IV	10	(i) Determine the surface tension	3
	EXPERIMENTAL		of various liquids by drop number	
	WORK (A)		method.	
			(ii) Determination of viscosity of	
			aqueous solutions at room	
			temperature.	
CHEMISTRY MINCHM1	Unit: II Liquid state:	8	 Qualitative treatment of the structure of liquids, Physical properties of liquids, vapour pressure. [2] Surface tension and its determination using stalagmometer.[1] Viscosity of a liquid and determination of coefficient of viscosity using Ostwald Viscometer. [1] Effect of temperature on surface tension and coefficient of viscosity of 	3

			a liquid (qualitating	
			a liquid (qualitative	
			treatment) [2]	
		10	Parachor - determination and application.[2]	
CHEMISTRY	UNIT: II Chemical	18	Order and molecularity of a	5
-C-303	Kinetics		reaction, rate laws [2]	
			• Zero, First and Second order	
			reaction [4]	
			steady-state approximation [1]complex reactions, Opposing	
			reactions, parallel reactions,	
			consecutive reactions, chain	
			reactions [8]	
			Arrhenius equation, activation	
			energy, Collision theory of	
			reaction rates [3]	
			• Lindemann mechanism, absolute reaction rates [3]	_
CHEMISTRY	Physical Chemistry	28	Acid hydrolysis of methyl	3
-C-303-LAB	Practical		acetate with hydrochloric acid	
			[4]Saponification of ethyl acetate	
			[4]	
			• Verify the Freundlich and	
			Langmuir isotherms for	
			adsorption of acetic acid on	
			activated charcoal [6]	
CHEMISTRY	UNIT: 3	6	Conductivity, equivalent and	2
GE-301	Conductance		molar conductivity [2] • Kohlrausch's law.	
			• Kohlrausch's law, Transference number, Hittorf	
			method, Moving boundary	
			methods [4]	
			Ionic mobility, solubility and	
			solubility products of	
			sparingly soluble salts,	
			hydrolysis constant of a salt. Conductometric titrations [6]	
CHEMISTRY	Section A: Physical	10	Cell constant [2]	2
GE-301 Lab	Chemistry		• conductometric titration [8]	_
GE-301 Lab				
CHEMISTRY	UNIT: II Molecular	24	Electromagnetic radiation,	4
-C-502	Spectroscopy		Born Oppenheimer	'
	~pecu oscopj		approximation [3]	
			Rotation spectroscopy [5]	
			Vibrational spectroscopy [6]	
			Vibration-rotation	
			spectroscopy [5]	
			Electronic spectroscopy [5]	
CHEMISTRY	Physical Chemistry	28	NMR spectroscopy [4] Study the 200 500 pm	5
	Practical Chemistry	20	• Study the 200-500 nm absorbance spectra of KMnO4	5
- C-502 Lab	1 I actical		and K ₂ Cr ₂ O ₇ (in 0.1 M	
	1	İ		

H2SO ₄) and λ determine the
max values
Verify Lambert-Beer's law
and determine the
concentration of KMnO ₄
• Viva Voce [2]

Course: B. Sc.

Session: Even semester 2024

Subject: CHEMISTRY

Name of the Teacher: DR. ANNA GOGOI

Methods to be applied: Lecture, analytical and activity method, interaction and discussion.

Teaching Materials: Green Board, Chalk Pencil, Duster, Book, Journal, Laptop, Projector.

Paper Code/Title	Allotted Unit/ Topic	No. of Class required	Detail of the topics to be taught & class required	No. of tutorial s
CHEMISTRY CHMC2	UNIT: II Chemical Thermodynamics I	30	 Intensive and extensive variables; state and path functions; isolated, closed and open systems [3] zeroth law of thermodynamics [2] First law: Concept of heat, q, work, w, internal energy, U [3] enthalpy, H, heat capacities [3] enthalpy, H, relation between heat capacities, calculations of q, w, U and H for free expansion of gases (ideal and van der Waals) under isothermal and adiabatic conditions [6] Joule Thomson effect, calculation of Joule Thomson co-efficient for ideal and Vander Waal's gas. [3] Thermo chemistry- Hess's law, Kirchhoff's law relation of reaction enthalpy with internal energy [2] bond energy, bond dissociation energy and resonance energy [3] 	4
CHEMISTRY MINCHM2	Unit II Ionic Equilibria:	12	Strong, moderate and weak electrolytes, degree of ionization, factors affecting degree of ionization [2]	4

			 ionization constant and ionic product of water. [2] Ionization of weak acids and bases, pH scale, common ion effect. [1] Salt hydrolysis-calculation of hydrolysis constant, degree of hydrolysis and pH for different salts. [3] Buffer solutions. Solubility and solubility product of sparingly soluble salts – applications of solubility product principle. [2]
	Unit IV Experimental Work	20	 pH -metry and (i) pH- metric titration; (a) strong acid vs. strong base (b) weak acid vs. strong base [4] (ii) Preparation of buffer solutions of different pH (a) sodium acetate-acetic acid (b) ammonium chloride-ammonium hydroxide[2] Determine the surface tension of various liquids by drop number method. [4] Determination of viscosity of aqueous solutions at room temperature. [4]
CHEMISTRY - C-403	UNIT: I Conductance	20	 Arrhenius theory of electrolytic dissociation, Conductivity, equivalent and molar conductivity [4] Kohlrausch law of independent migration of ions, Debye-Hückel-Onsager equation [3] Wien effect, Debye-Falkenhagen effect, Walden's rules [2] Ionic velocities, mobilities, transference number and its determination, Hittorf method, Moving Boundary method [6] degree of dissociation of weak electrolytes, ionic product of water, hydrolysis constants of salts and conductometric titrations[6]
CHEMISTRY - C-403 -LAB	Physical Chemistry Practical	16	 Determination of cell constant [4] conductometric titrations [12] Viva Voce [3]

CHEMISTRY -GE-401	UNIT: VII Chemical Kinetics	8	 surface tension and its determination [2] Viscosity of a liquid and its determination [2] Effect of temperature on surface tension and coefficient of viscosity of a liquid [2] The concept of reaction rates, Effect of temperature, pressure, catalyst and other factors on reaction rates [2] Order and molecularity of a reaction, Zero order reaction, First order reaction, Second order reaction [4] Half-life of a reaction, determination of order of a reaction [2] activation energy and its calculation from Arrhenius equation [1] Collision theory and Activated Complex theory [2] 	2
CHEMISTRY -GE-401-LAB	Section B: Physical Chemistry Practical	12	 Determination of the surface tension [6] Determination of viscosity of liquid [6] Viva Voce [3] 	2
CHEMISTRY- DSE-603	Project Work	48	• Project Work [48]	6

Signature of Faculty

Course: B. Sc.

Session: Odd semester 2023

Subject: **CHEMISTRY**

Name of the Teacher: Dr. Arandao Narzary

Methods to be applied: Lecture, practical demonstration, interaction and discussion.

Teaching Materials: White Board, Marker Pen, Duster, Book, Journal, Laptop, Projector, Pointer

Paper Code/Title	Allotted Unit/ Topic	No. of Class required	Detail of the topics to be taught & class required	No. of tutorials
CHEMISTRY CHMC1	Stereochemistry:	14	 Elements of symmetry[1] Definition and classification of Stereoisomerism[1] Representation of organic molecules in three & two dimension[1] Optical isomerism [4] Relative and absolute configuration: D/L and R/S designations [3] Geometrical Isomerism [4] 	2
CHEMISTRY CHMC1-Lab	Organic Chemistry practical	4	 Purification of organic compounds by crystallization[2] Separation of a mixture of o-and p-nitrophenol or o and p-aminophenol by thin layer chromatography (TLC)[2] 	4
Chemistry MINCHM1	Aliphatic Hydrocarbons-1:	8	 Alkanes (upto 5 carbons) Preparation:-Catalytic hydrogenation, Wurtz reaction, Kolbe's Synthesis, from Grignard reagent. Corey-House Synthesis. [2] Reactions: Free radial Substitution: Halogenations[6] 	2
Basic Analytical Chemistry SEC123-Lab	Analytical practical	2	 Determination of dissolved oxygen in water[2] Spectrophotometric determination of Iron inVitamin / Dietary Tablets [2] 	2

CHEMISTRY C-302	Unit I: Chemistry of Halogenated Hydrocarbons Part:A Alkyl Halide and Aryl halide	15	 Nucleophilic substitution reaction[2] S_Ni mechanisms with stereochemical aspects and effect of solvent etc.[2] Nucleophilic substitution vs. elimination[2] Methods of preparation including Hunsdiecker Reaction[1] Preparation, including preparation from diazonium salts.[1] Nucleophilic aromatic substitution; SNAr[1] Benzyne mechanism[2] Relative reactivity of alkyl, allyl/benzyl, vinyl and aryl halides towards nucleophilic substitution reactions.[3] 	6
	Part:B Organometallic compounds of	2	Organometallic compounds of Mg and Li Use in synthesis of organic compounds.[2]	2
	Unit II: Periodicity of Elements Part A:	12	 Structure, reactivity and preparation[1] Mechanisms of Aldol and Benzoin condensation, Knoevenagel condensation, Claisen-Schmidt, Perkin, Cannizzaro and Wittig reaction, Beckmann and Benzil-Benzilic acid rearrangements, haloform reaction and Baeyer Villiger oxidation, α- substitution reactions, Clemmensen, Wolff-Kishner, MPV[8] LiAlH4, NaBH4, PDC, PCC, SeO2, Pb(OAc) 4 & HIO4 (Synthetic applications only)[2] Addition reactions of unsaturated carbonyl compounds: Michael addition. Unsaturated Aldehydes (Acrolein, Crotonaldehyde, Cinnamaldehyde) Unsaturated Ketone (MVK)[1] Active methylene compounds: Keto-enol 	7
	Part B	2	tautomerism. Preparation and synthetic applications of diethyl malonate and ethyl acetoacetate[2]	
CHEMISTRY C-302-LAB	Organic Chemistry practical	17	carbonyl, and carboxylic acid group[8] Preparation by Acetylation[1] Preparation by Benzolyation [2] Preparation by Oxidation[1] Preparation by Nitration[1] Preparation by Hydrolysis[1] Preparation by Benzil-Benzilic acid rearrangement[1] Viva Voce [2]	2
	Unit I: Nucleic Acids	9	Components of nucleic acids, Nucleosides and nucleotides[3]	4

CHEMISTRY- C-501	Unit II: Amino Acids, Peptides and Proteins	16	 Structure, synthesis and reactions of: Adenine, Guanine, Cytosine, Uracil and Thymine[2] Structure of polynucleotides. Structure of DNA (Watson & Model) and RNA, Genetic Code Biological role of DNA and[2] RNA, Replication, Transcription and Translation [2] Amino acids, Peptides and their classification. α-Amino Acids [4] Synthesis, properties and reactions [3] Study of peptides: determination of their primary structures-end group analysis [4] Methods of peptide synthesis. Synthesis 	5
	Unit IV: Lipids	8	of peptides using N-protecting, C- protecting and C-activating groups - Solid-phase synthesis [5] Introduction to oils and fats; common fatty acids present in oils and fats[3] Hydrogenation of fats and oils, Saponification value, acid value, iodine	2
	Unit V: Disconnection approach in Organic Synthesis	10	number. Reversion and rancidity[5]	6
CHEMISTRY- C-501-LAB	Organic Chemistry practical	8	 Estimation of glycine by Sorenson's formalin method.[2] Study of the titration curve of glycine[1] Study of the action of salivary amylase on starch at optimum conditions[1] Effect of temperature on the action of salivary amylase[1] Saponification value of an oil or a fat.[1] Viva [2] 	2
CHEMISTRY- DSE-502-LAB	Green Chemistry practical	10	 Preparation of biodiesel from vegetable oil[2] Preparation of acetanilide from aniline using acetic acid in presence of zinc dust[1] Photoreduction of benzophenone to benzopinacol in the presence of sunlight[5] Viva[2] 	2
	Unit VIII: Amino Acids, Peptides and Proteins	12	 Introduction and Preparation of Amino Acids: Strecker synthesis using Gabriel's phthalimide synthesis [4] Zwitterion, Isoelectric point and Electrophoresis[2] 	3

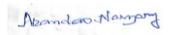
			 Reactions of Amino acids: ester of – COOH group, acetylation of –NH2 group, complexation with Cu₂₊ ions, ninhydrin test[2] Overview of Primary, Secondary, Tertiary and Quaternary Structure of proteins[4]
CHEMISTRY-	Chemistry	10	• Systematic Qualitative Organic 2
GE-301-LAB	Practical		Analysis of Organic Compounds[10

Course: B. Sc.

Session: Even semester 2024

Subject: CHEMISTRY

Name of the Teacher: Dr. Arandao Narzary


Methods to be applied: Lecture, practical demonstration, interaction and discussion.

Teaching Materials: White Board, Marker Pen, Duster, Book, Journal, Laptop, Projector, Pointer.

Paper Code/Title	Allotted Unit/ Topic	No. of Class required	Detail of the topics to be taught & class required	No. of tutorials
CHEMISTRY- CHMC2	Carbon-carbon pi-bond	16	 Formation of alkenes and alkynes [4] Elimination reaction [2] Reaction of alkenes: Electrophilic and free radical additions, their mechanisms. Oxymercuration—demercuration, Hydroboration- Oxidation, Ozonolysis, reduction (catalytic and chemical). Syn and Anti hydroxylation(oxidation)[8] 	4
CHEMISTRY- CHMC2 -Lab	Organic Chemistry Practical	15	Detection of elements (N, S and Halogens) and detection of functional groups [15]	5
Chemistry MINCHM2	Fundamentals of Chemistry	7	Alkenes Preparation and Reactions[4] Alkynes: Preparation and Reactions[3]	3
CHEMISTRY SEC223	Basic Analytical Chemistry	4	 To determine the Aniline point of a given lubricating oil[2] To determine the acid value of a given oil[2] 	2
CHEMISTRY- C-402	UnitII: Polynuclear Aromatic Hydrocarbons	14	 Preparation and structure elucidation & Reactions of Polynuclear hydrocarbons: naphthalene [4] Preparation and structure elucidation & Reactions of Polynuclear hydrocarbons: Phenanthrene [4] Preparation and structure elucidation & Reactions of Polynuclear hydrocarbons: anthracene [4] Important derivatives of naphthalene and anthracene [2] 	2
	Unit III: Heterocyclic Compound-I	12	 Classification and nomenclature, Structure, aromaticity in 5-numbered and 6-membered rings containing one heteroatom[2] Synthesis, reactions and mechanism of substitution reactions of: Furan, Pyrrole 	4

CHEMISTRY-	Heterocyclic Compound-II Unit V: Terpenes	12 7	 (Paal-Knorr synthesis, Knorr pyrrole synthesis, Hantzsch synthesis), Thiophene [8] Derivatives of furan: Furfural and furoic acid [2] Synthesis and reaction of Pyridine, Pyrimidine, indole, Fischer indole quinoline and isoquinoline [12] Occurrence, classification, isoprene rule; Elucidation of stucture and synthesis of Citral, Neral and α-terpineol[7] Qualitative analysis of unknown organic 	1 2
C-402-LAB CHEMISTRY- C-602	Chemistry Practical Unit I: Organic Spectroscopy NMR Spectroscopy:	15	 compounds [14] Basic principles of Proton Magnetic Resonance[[2] Chemical shift and factors influencing it; Spin – Spin coupling and coupling constant; Anisotropic effects in alkene, alkyne, aldehydes and aromatics[3] Interpetation of NMR spectra of simple compounds[2] Applications of IR, UV, NMR and Mass for identification of simple organicmolecules[8] 	2
	Unit II: Carbohydrates	16	 Occurrence, classification and their biological importance [2] Monosaccharides: Constitution and absolute configuration of glucose and fructose [4] Epimers and anomers, mutarotation [2] Determination of ring size of glucose and fructose[4] Haworth projections and conformational structures; Assecnding and descending in monosaccharide[1] Interconversions of aldoses and ketoses; Killiani- Fischer synthesis and Ruff degradation [3] 	2
	Unit III: Dyes	8	 Classification, Colour and constitution; Mordant and Vat Dyes [2] Synthesis and applications of: Azo dyes Methyl Orange and Congo Red [1] Triphenyl Methane Dyes -Malachite Green, Rosaniline and Crystal Violet[1] Phthalein Dyes - Phenolphthalein and Fluorescein[1] Natural dyes -structure[1] Elucidation and synthesis of Alizarin and Indigotin; Edible Dyes with examples [2] 	1

CHEMISTRY- C-602-LAB	Organic Chemistry Practical	19	 Qualitative analysis of unknown organic compounds containing monofunctional groups [14] Extraction of caffeine from tea leaves [1] Identification of simple organic compounds by IR spectroscopy and NMR Spectroscopy (Spectra to be provided) [2] Viva [2] 	3
CHEMISTRY- DSE-603	Dissertation (Project Work)	30	Project Work [30]	2
CHEMISTRY- GE-201	Section <i>B</i> : Organic Chemistry Unit IV: Aromatic Hydrocarbons	8	 Preparation of aromatic hydrocarbon [2] Reactions: Electrophilic substitution: nitration, halogenation and sulphonation. Friedel-Craft's Side chain oxidation of alkyl benzenes 	2
	Unit V: Alkyl and Aryl Halides	8	 Nucleophilic Substitution (SN1, SN2 and SNi) reactions [2] Preparation of alkylhalide from alkenes and alcohols. Reactions: hydrolysis, nitrite & nitro formation, nitrile & isonitrile formation. Williamson's ether synthesis: Elimination vs substitution.[2] Aryl Halides: Preparation: (Chloro, bromo and iodo-benzene case): from phenol, Sandmeyer & Gattermann reactions.[2] Aromatic nucleophilic substitution and effect of nitro substituent. Benzyne Mechanism[1] Reactivity Relative strength of C-Halogen bond in alkyl, allyl, benzyl, vinyl and aryl halides[1] 	2
CHEMISTRY- GE-201-LAB	Chemistry Practical	5	 Purification of organic compounds by crystallization [2] Determination of melting and boiling points[1] Preparation by Benzoylation of amines/phenols[1] Preparation of Oxime and 2, 4-dinitrophenylhydrazone of aldehyde/ketone[1] Viva [2] 	2

(Signature)

Course: B. Sc.

Session: Odd semester 2023

Subject: **CHEMISTRY**

Name of the Teacher: Mr. Rituraj Tahu

Methods to be applied: Lecture, practical demonstration, interaction and discussion.

Teaching Materials: White Board, Marker Pen, Duster, Book, Journal, Laptop, Projector, Pointer, etc

Paper Code/Title	Allotted Unit/ Topic	No. of Class required	Detail of the topics to be taught & class required	No. of tutorials
CHEMISTRY CHMC1	UNIT III: Basics of Organic Chemistry	13	 Organic Chemistry Organic Compounds: classification and Nomenclature. Hybridization: Shape of molecules, Influence of hybridization on bond properties. Electronic displacements: Inductive, Electromeric, Resonance, Mesomeric effects and Hyper conjugation and their applications. Dipole moment. Organic acids and bases: Their relative strength, Homolytic and Heterolytic fission, Electrophiles and Nucleophiles: Nucleophilicity and basicity. Reactive intermediates: Carbocations, carbanions, free radicals, carbenes, nitrenes, Types, Shape and their relative Stability. Energy profile diagrams of one step, two steps and three steps reactions, Rate limiting steps. Activation Energy. Kinetically and thermodynamically controlled reactions. 	3
UNIT IV	EXPERIMENTA L WORK (B	18	EXPERIMENTAL WORK (B) Purification of organic compounds by crystallization using the following solvents: a. Water b. Alcohol c. Alcohol-water and determination of the melting points of above compounds (Kjeldahl method and electrically heatedmelting point apparatus) OR	

CHEMISTRY C-302	Unit II: Alcohols, Phenols, Ethers and Epoxides	14	 (ii) Separation of a mixture of oand p-nitrophenol or o- and p-aminophenol by thin layer chromatography Alcohols preparation, properties and relative reactivity of 1°, 2°, 3° alcohols Bouvaelt-Blanc Reduction Preparation and properties of glycols Oxidation by OsO4, alkaline KMnO4, periodic acid and lead Tetraacetate Pinacol Pinacolone Rearrangement Trihydric alcohols: Glycerol /Preparation & Properties [8] Phenols Preparation and properties; Acidity and factors effecting it Ring substitution reactions, Reimer—Tiemann and Kolbe's—Schmidt Reactions Fries and Claisen rearrangements with mechanism [3] Ether and Epoxides Preparation and reactions with acids Reaction of epoxide with alcohols ammonia derivatives and LiAlH4 [3] 	4
	Unit IV: Carboxylic Acids and their Derivatives:	12	 Preparation, physical properties and reactions of monocarboxylic acids (Acidity and factors affecting it) Typical reactions of dicarboxylic acids, hydroxy acids and unsaturated acids [4] succinic, phthalic, lactic, malic, tartaric, citric, maleic and fumaric acids Preparation and reactions of acid chlorides, anhydrides, esters and amides [4] Comparative study of nucleophilic sustitution at acyl group - Mechanism of acidic and hydrolysis of esters Claisen condensation, Dieckmann and Reformatsky reactions, Hofmann bromamide degradation and Curtius rearrangement [4] 	7

CHEMISTRY C-302-LAB	Organic Chemistry practical	17	 Functional group tests for alcohols, carbonyl, and carboxylic acid group [8] Preparation by Acetylation [1] Preparation by Benzolyation [2] Preparation by Oxidation [1] Preparation by Nitration [1] Preparation by Hydrolysis [1] Preparation by Benzil-Benzilic acid rearrangement [1] Viva Voce [2] 	2
CHEMISTRY- C-501	Unit III: Enzymes	8	 Introduction, classification and characteristics of enzymes. Salient features of active site of enzymes [2] Mechanism of enzyme action (taking trypsin as example), factors affecting enzyme action, coenzymes and cofactors and their role in biological reactions, specificity of enzyme action (including stereospecificity) [3] enzyme inhibitors and their importance, phenomenon of inhibition (competitive, uncompetitive and noncompetitive inhibition including allosteric inhibition) [3] 	4
	Unit VI: Pharmaceutical Compounds: Structure and Importance	16	 Classification, structure and therapeutic uses of antipyretics: Paracetamol (with synthesis), Analgesics: Ibuprofen (with synthesis), Antimalarials Antacids: Ranitidine; Antibacterial: Povidone—Iodine Solution, Synthesis and mode of action of Sulphanilamide and other Sulpha drugs (sulphapyridine sulphathiazole) Chloroquine (with synthesis). An elementary treatment of Antibiotics and detailed study of chloramphenicol, Medicinal values of curcumin (haldi), azadirachtin (neem), vitamin C. 	8

CHEMISTRY- C-501-LAB	Organic Chemistry practical	8	 Estimation of glycine by Sorenson's formalin method.[2] Study of the titration curve of glycine [1] Study of the action of salivary amylase on starch at optimum conditions [1] Effect of temperature on the action of salivary amylase [1] Saponification value of an oil or a fat.[1] Viva [2] 	2
CHEMISTRY- MINCHM1	Introduction to Organic Chemsitry	12	• Importance of Organic Chemistry & organicsystems to human beings & society. Electronicdisplacements: Inductive effect, Electrometriceffect, Resonance and hyperconjugation.b) Mechanism of organic reactions: Cleavage ofBonds- Homolysis and Heterolysis. Structure, shapeand reactivity of organic molecules- Nucleophilesand electrophiles. Reactive Intermediates- Carbocations, carbanions, free radicals, carbenes & nitrenes. Strength of organic acids and bases.	5
CHEMISTRY- GE-301	Section B: Organic Chemistry Unit V: Carboxylic acids and their derivatives	6	 Carboxylic acids (aliphatic and aromatic): Preparation: Acidic and Alkaline hydrolysis of esters. Reactions: Hell – Vohlard - Zelinsky Reaction [2] Carboxylic acid derivatives (aliphatic): (upto 5 carbons) Preparation: Acid chlorides, anhydrides, Esters and Amides from acids and their interconversion [2] Reactions: Comparative study of nucleophilicity of acyl derivatives. Reformatsky Reaction, Perkin Condensation [2] 	3

	Unit VI: Amines	6	• Amines (Aliphatic and Aromatic):	3
	and Diazonium		(Up to 5 carbons): Preparation:	
	Salts		from alkyl halides, Gabriel's	
			Phthalimide synthesis, Hofmann	
			Bromamide reaction. Reactions:	
			Hofmann vs. Saytzeff elimination,	
			Carbylamine test, Hinsberg test,	
			with HNO2, Schotten – Baumann	
			Reaction. Electrophilic substitution	
			(case aniline): nitration,	
			bromination, sulphonation [4]	
			• Diazonium salts: Preparation: from	
			aromatic amines. Reactions:	
			conversion to benzene, phenol,	
			dyes [2]	
CHEMISTRY-	Chemistry	10	Systematic Qualitative Organic	2
GE-301-LAB	Practical		Analysis of Organic Compounds [10	

Course: B. Sc. Session: Even semester 2024

Subject: CHEMISTRY

Name of the Teacher: Mr. Rituraj Tahu

Methods to be applied: Lecture, practical demonstration, interaction and discussion.

Teaching Materials: White Board, Marker Pen, Duster, Book, Journal, Laptop, Projector, Pointer.

Paper Code/Title	Allotted Unit/ Topic	No. of Class required	Detail of the topics to be taught & class required	No. of tutorials
	1	1	1	
CHEMISTRY	UNIT III	15	Carbon- Carbon sigma bonds:	4
CHMC2			Chemistry of Alkanes: Formation of	
			alkanes with special emphasis on	
			Corey House Synthesis, Wurtz	
			reaction, Wurtz-Fittig reaction.	
			Reactions of alkanes: Free Radical	
			substitution: Halogenations-relative	
			reactivities and selectivity.	
			 Syn and Anti hydroxylation(oxidation), simple effect of stereo selectivity and stereo specificity. Reactions of Alkynes: Acidity, 	
			Electrophilic and Nucleophilic	
			additions, Hydration to form	
			carbonyl compounds. Alkylation of	
			terminal alkynes.	
			EXPERIMENTAL WORK (B):	5
	UNIT IV	15	Detection of elements (N, S and	
			Halogens)	
			(ii) Detection of functional groups.	
			(ii) Detection of functional groups.	
CHEMISTRY-	Unit I: Nitrogen	16	Amines: Effect of substituent and	2
C-402	Containing Functional		solvent on basicity; Preparation and	
	Groups		properties: Gabriel phthalimide synthesis, Carbylamine reaction,	
	Stoups		Mannich reaction, Hoffmann's	

	Unit IV: Alkaloids	6	exhaustive methylation, Hofmann- elimination reaction; Distinction between 1°, 2° and 3° amines with Hinsberg reagent and nitrous acid [10] • Diazonium Salts: Preparation and their synthetic applications. Diazomethane & Diazoacetic Ester with synthetic application [6] • Natural occurrence, General structural features, Isolation and their physiological action [2] • Hoffmann's exhaustive methylation, Emde's modification, Structure elucidation and synthesis of Hygrine and Nicotine. Medicinal importance of Nicotine, Hygrine, Quinine,	
CHEMISTRY- C-402-LAB	Organic Chemistry	14	Morphine, Cocaine, and Reserpine [4] • Qualitative analysis of unknown organic compounds	2
0.02.20	Practical		Compounds	
CHEMISTRY-C-602	Unit I: Organic Spectroscopy	15	 UV Spectroscopy: Types of electronic transitions, λmax, Chromophores and Auxochromes, Bathochromic and Hypsochromic shifts, Intensity of absorption; Application of Woodward Rules for calculation of λmax for the following systems: α, β unsaturated aldehydes, ketones, carboxylic acids and esters; Conjugated dienes: alicyclic, homoannular and heteroannular; Extended conjugated systems (aldehydes, ketones and dienes); distinction between cis and trans isomers. IR Spectroscopy: Fundamental and non-fundamental molecular vibrations; IR absorption positions of O, N and S containing functional groups; Effect of H-bonding, conjugation, resonance and ring size on IR absorptions; Fingerprint region and its significance; application in functional group analysis. 	2
	Unit IV: Polymers	16	• Introduction and classification of polymers [6]	2

			Polymerisation reactions -Addition and condensation -Mechanism of cationic, anionic and free radical addition polymerization; Ziegler-Natta polymerisation of alkenes; Preparation and applications of plastics — thermosetting (phenol-formaldehyde, Polyurethanes) and thermosoftening (PVC, polythene) [10]	
CHEMISTRY- C-602-LAB	Organic Chemistry Practical	19	, , , , , , , , , , , , , , , , , , , ,	3
CHEMISTRY- DSE-603	Dissertation (Project Work)	30	Project Work [30]	2
CHEMISTRY- GE-201	Section B: Organic Chemistry Unit VI: Alcohols, Phenols and Ethers (Up to 5 Carbons)	8	 Alcohols: Preparation: Preparation of 10, 20 and 30 alcohols: using Grignard reagent, Ester hydrolysis, Reduction of aldehydes, ketones, carboxylic acid and esters. Reactions: With sodium, HX (Luca's test), esterification, oxidation (with PCC, alk. KMnO4, acidic dichromate, conc. HNO3). Diols: (Up to 6 Carbons) oxidation of diols. Pinacol-Pinacolone rearrangement [2] Phenols: (Phenol case): Preparation: Cumene hydroperoxide method, from diazonium salts. Reactions: Electrophilic substitution: Nitration, halogenation and sulphonation. Reimer- Tiemann Reaction, Schotten – Baumann Reaction [2] Ethers (aliphatic and aromatic) Cleavage of ethers with HI [2] Aldehydes and ketones (aliphatic and aromatic): (Formaldehye, acetaldehyde, acetone and benzaldehyde): Preparation: from acid chlorides and from nitriles. Reactions – Reaction with HCN, ROH, NaHSO3, NH2-G derivatives. Iodoform test. Aldol Condensation, Cannizzaro's Reaction, Wittig Reaction, Benzoin Condensation. Clemensen Reduction and 	2

			Wolff Kishner Reduction. Meerwein- Pondorff Verley Reduction [2]	
CHEMISTRY- GE-201-LAB	Chemistry Practical	5	 Purification of organic compounds by crystallization [2] Determination of melting and boiling points [1] Preparation by Benzoylation of amines/phenols [1] Preparation of Oxime and 2, 4-dinitrophenylhydrazone of aldehyde/ketone [1] Viva [2] 	2

Rituraj Tahu

Signature of the Teacher

Course: B. Sc.

Session: Odd semester 2023

Subject: CHEMISTRY

Name of the Teacher: DR. PAKIZA BEGUM

Methods to be applied: Lecture, analytical and activity method, Group Work, Flipped Classroom, Problem-Based Learning, Peer Teaching, Experiential Learning, Assessment for Learning, Assignments and Exercises, Group Activities and Discussions, Feedback and Assessments.

Teaching Materials: White Board, Marker, Duster, Laptop, Projector, text books, multimedia, applications, software, digital learning resources including video, audio, text, websites, animations and images, lectures, Online Resources etc.

Paper Code/Title	Allotted Unit/ Topic	No. of Classes required	Detail of the topics to be taught & class required	No. of tuto rials
Core Course -1 CHMC1	Unit I: Bonding and structure	7	 Hydrogen Bonding. Covalent Bonding: VB Approach-Concept of hybridization (sp, sp², sp³, sp³d, sp³d² and dsp²) [2] VSEPR Theory. Resonance and Resonance energy: Study of some inorganic and organic compounds (O₃, NO₃⁻, CO₃²⁻, SO₄²⁻, RCOO⁻, C₆H₆) [1] Co-ordinate or Dative Bond. Bonding and antibonding MOs and their characteristics for s-s, s-p and p-p combination of atomic orbitals non-bonding combination of orbitals [2] MO treatment of homonuclear diatomic molecules and heteronucear diatomic molecules 	7
Fundamen tals of Chemistry - 1 MINCHM 1	Unit I: Atomic Structure	7	 such as CO, NO and NO⁺ [2] (Recapitulation of Bohr's Theory, de Broglie, Theory, Heisenberg Uncertainty Principle) [2] Quantum numbers [1] Electronic configuration of elements based upon electronic configuration in the periodic table [1] Periodic properties-effective nuclear charge, ionization energy, electron affinity [1] Electronegativity (Pauling, Mulliken's and Allred-Rochow scales) [1] Redox potential [1] 	4
Basic Analytical Chemistry SEC123	Unit II: Analysis of water	5	 Definition of pure water, sources responsible for contaminating water, water sampling methods, water purification methods [1] Determination of pH, acidity and alkalinity of a water sample [2] Determination of dissolved oxygen (DO) of a water sample [2] 	2

-	T			
Inorganic Chemistry C-301	Unit I: General Principles of Metallurgy	6	 Chief modes of occurrence of metals based on standard electrode potentials [1] Ellingham diagrams for reduction of metal oxides using carbon and carbon monoxide as reducing agent [2] Electrolytic Reduction, Hydrometallurgy [1] 	7
	Unit II: Acids	8	 Methods of purification of metals: Electrolytic Kroll process, Parting process, van Arkel-de Boer process and Mond's process, Zone refining [2] Brönsted-Lowry concept of acid-base 	7
	and Bases	Ü	 Bronsted-Lowry concept of acid-base reactions, solvated proton [2] Relative strength of acids, types of acid-base reactions, levelling solvents [2] Lewis acid-base concept, Classification of Lewis acids [2] Hard and Soft Acids and Bases (HSAB) Application of HSAB principle [2] 	,
	Unit IV: Noble gases	8	 Occurrence and uses, rationalization of inertness of noble gases, Clathrates [2] Preparation and properties of XeF₂, XeF₄ and XeF₆ [2] Nature of bonding in noble gas compounds (Valence bond treatment and MO treatment for XeF₂) [2] Molecular shapes of noble gas compounds (VSEPR theory) [2] 	4
CHEMIS TRY-C- 301-LAB	Inorganic Chemistry Practical	28	 Iodo / Iodimetric Titrations [12] Inorganic preparations [14] Viva Voce [2] 	3
Analytical Methods in Chemistry DSE-501	Unit II: UV- Visible and IR Spectrometry	25	 Origin of spectra, interaction of radiation with matter, fundamental laws of spectroscopy and selection rules, validity of Beer-Lambert's law [3] UV-Visible Spectrometry: Basic principles of instrumentation (choice of source, monochromator and detector) for single and double beam instrument; Basic principles of quantitative analysis: estimation of metal ions from aqueous solution, geometrical isomers, keto-enol tautomers. Determination of composition of metal complexes using Job's method of continuous variation and mole ratio method [8] Infrared Spectrometry: Basic principles of instrumentation (choice of source, monochromator & detector) for single and double beam instrument; sampling techniques. Structural illustration through interpretation of data, effect and importance of isotope substitution [7] Flame Atomic Absorption and Emission Spectrometry: Basic principles of instrumentation (choice of source, 	7

			monochromator, detector, choice of flame and Burner designs. Techniques of atomization and sample introduction; Method of background correction, sources of chemical interferences and their method of removal. Techniques for the quantitative estimation of trace level of metal ions from water samples [7]	
CHEMIS TRY- DSE-501- PRACT	Analytical Methods in Chemistry Practical	28	 Paper chromatographic separation of Fe³⁺, Al³⁺, Cr³⁺, Ag⁺, Hg₂²⁺, and Pb²⁺ [6] Determine the pH of the given aerated drinks fruit juices, shampoos and soaps [6] Determination of dissolved oxygen in water [8] Analysis of soil: determination of pH of soil [6] Viva Voce [2] 	1
Green Chemistry DSE-502	Unit I: Introduction to Green Chemistry	4	 What is Green Chemistry? Need for Green Chemistry. Goals of Green Chemistry [2] Limitations? Obstacles in the persuit of the goals of Green Chemistry [2] 	1
	Unit II: Principles of Green Chemistry and Designing a Chemical synthesis	5	 Twelve principles of Green Chemistry with their explanations and examples and special emphasis on the following [1] i) Designing a Green Synthesis using these principles; Prevention of Waste/ byproducts; maximum incorporation of the materials used in the process into the final products, Atom Economy, Calculation of atom economy of the rearrangement, addition, substitution and elimination reactions [3] ii) Prevention/ minimization of hazardous/ toxic products reducing toxicity [1] 	1

Course: B. Sc.

Session: Even semester 2024

Subject: CHEMISTRY

Name of the Teacher: DR. PAKIZA BEGUM

Methods to be applied: Lecture, analytical and activity method, Group Work, Flipped Classroom, Problem-Based Learning, Peer Teaching, Experiential Learning, Assessment for Learning, Assignments and Exercises, Group Activities and Discussions, Feedback and Assessments.

Teaching Materials: White Board, Marker, Duster, Laptop, Projector, text books, multimedia, applications, software, digital learning resources including video, audio, text, websites, animations and images, lectures, Online Resources etc.

Paper	Allotted	No. of Class	Detail of the topics to be taught & class	No. of tutorial s	
Code/Title	Unit/ Topic	required	required		
CORE COURSE -2 CHMC2	UNIT I: Metals	30	 Theory of reduction (Thermodynamic approach) [2] Role of carbon and other reducing agents [2] Electrolytic reduction, roasting and calcinations [2] Method of purification and refining of metals including modern methods like zone refining, vacuum arc process, ion exchange, solvent extraction and electrolytic method, Van- Arkel process and hydrometallurgy [16] Study of potassium dichromate, manganese dioxide, potassium permanganate, ammonium molybdate, sodium cobaltinitrite, cobalt nitrate, Ni-DMG, vanadium pentoxide) [8] 	4	
Fundamentals	Unit IV: EXPERIME NTAL WORK (A) Unit I:	10	 Estimation of Fe(II) or oxalic acid using standardized KMnO4 solution [4] Estimation of Fe(II) with K₂Cr₂O₇ using diphenylamine as internal indicator [4] Viva Voce [2] Review of Werner's theory [1] 	3	
of Chemistry - 2 MINCHM2	Coordinatio n Chemistry	0	 Review of Werner's theory [1] Types of ligands, monodentate, bidentate ambidentate and polydentate ligands (including _ Acceptor and macrocyelic ligands [1] IUPAC Nomenclature of Co-ordination compounds [1] Isomerism of 4-and 6- coordinate compounds [1] 	J	

Basic Analytical Chemistry (Fuel Chemistry) SEC223	Unit II:	9	 Introduction to Valence Bond and Crystal Field theory [2] Application of dimethyl glyoxime, EDTA, 8-hydroxy quinoline, 2,2-bipyridyl, and ethylenediamine in analysis [2] Petroleum and Petrochemical Industry: Composition of crude petroleum; Different types of petroleum products and their applications [3] Principle and process of fractional distillation, Cracking - Thermal and catalytic cracking [3] Qualitative treatment of nonpetroleum fuels -LPG, CNG, LNG, bio-gas, fuels derived from biomass, fuel from waste; synthetic fuels -gaseous and liquids [3] 	1
		6	Petrochemicals: Vinyl acetate, Propylene oxide, Isoprene, Butadiene, Toluene and its derivatives Xylene [6]	
Environmenta 1 Science		6		
VAC-3				
Inorganic Chemistry C-401	Unit I: Coordinatio n Chemistry	26	 IUPAC nomenclature of coordination compounds, isomerism in coordination compounds [4] Stereochemistry of complexes with 4 and 6 coordination numbers. Chelate effect, polynuclear complexes. Labile and inert complexes [2] Werner's theory, valance bond theory (inner and outer orbital complexes), electroneutrality principle and back bonding [5] Crystal field theory, measurement of 10Dq (Δo), CFSE in weak and strong fields, pairing energies, factors affecting the magnitude of 10Dq (Δo, Δt) [7] Octahedral vs. tetrahedral coordination, tetragonal distortions from octahedral geometry [3] Jahn-Teller theorem, square planar geometry [2] Qualitative aspect of Ligand field and MO Theory [3] 	3
	Unit III: Lanthanoids and Actinoids	6	 Electronic configuration, oxidation states, color, spectral and magnetic properties [3] Lanthanide contraction, separation of lanthanides (ion-exchange method only) [3] 	3

CHEMISTRY- C-401-LAB	Inorganic Chemistry practical	28	 Gravimetric Analysis [8] Inorganic Preparation [8] Chromatography of metal ions [8] Viva-voce [4] 	4
CHEMISTRY- GE-401	Section A: Inorganic Chemistry Unit II: Coordinatio n Chemistry	8	 Valence Bond Theory (VBT): Inner and outer orbital complexes of Cr, Fe, Co, Ni and Cu (coordination numbers 4 and 6) [4] Structural and stereoisomerism in complexes with coordination numbers 4 and 6. Drawbacks of VBT [3] IUPAC (2005) system of nomenclature [1] 	2
	Unit III: Crystal Field Theory	8	 Crystal Field Theory (CFT): Crystal field effect, octahedral symmetry. Crystal field [2] Stabilization energy (CFSE), Crystal field effects for weak and strong fields. Tetrahedral symmetry [2] Factors affecting the magnitude of D. Spectrochemical series [2] Comparison of CFSE for Oh and Td complexes, Tetragonal distortion of octahedral geometry [2] 	4
CHEMISTRY- GE-401-LAB	Inorganic Chemistry Practical	20	 Qualitative Inorganic Analysis: Salt analysis [18] Viva – voce [2] 	2
Inorganic Chemistry C-601	Unit III: Reaction Kinetics and Mechanism	18	 Introduction to inorganic reaction mechanisms [1] Substitution reactions in square planar complexes [3] Trans-effect, theories of trans-effect, mechanism of nucleophilic substitution in square planar complexes [4] Thermodynamic and kinetic stability, kinetics of octahedral substitution, ligand field effects and reaction rates [6] Mechanism of substitution in octahedral complexes [4] 	2
	Unit IV: Catalysis by Organometal lic Compounds	10	Study of the following industrial processes and their mechanism • Alkene hydrogenation (Wilkinson's Catalyst) [3] • Hydroformylation (Co salts) • Wacker Process [3] • Synthetic Gasoline (Fisher Tropsch reaction) [2] • Synthesis gas by metal carbonyl complexes [2]	1

CHEMISTRY- C-601-LAB	Chemistry Practical	28	 Qualitative Inorganic Analysis: Salt analysis [25] Viva – voce [3] 	3
Inorganic Materials of Industrial Importance DSE-601	Unit I: Silicate Industries	16	 Glass: Glassy state and its properties, classification (silicate and non-silicate glasses). Manufacture and processing of glass. Composition and properties of the following types of glasses: Soda lime glass, lead glass, armoured glass, safety glass, borosilicate glass, fluorosilicate, coloured glass, photosensitive glass [6] Ceramics: Important clays and feldspar, ceramic, their types and manufacture. High technology ceramics and their applications, superconducting and semiconducting oxides, fullerenes carbon nanotubes and carbon fibre [5] Cements: Classification of cement, ingredients and their role, Manufacture of cement and the setting process, quick setting cements [5] 	
CHEMISTRY- DSE-601-LAB	Inorganic Materials of Industrial Importance practical	28	 Determination of free acidity in ammonium sulphate fertilizer. [6] Determination of free acidity in ammonium sulphate fertilizer. [6] Determination of composition of dolomite [6] Analysis of Cement [3] Preparation of pigment [4] Viva Voce [3] 	4
CHEMISTRY- DSE-603	Project Work	48	Project Work [48]	6

Pakiga Begin.

Signature of Faculty

Course: B. Sc.

Session: Odd semester 2023

Subject: CHEMISTRY

Name of the Teacher: DR. SAHEEN SHEHNAZ BEGUM

Methods to be applied: Lecture, analytical and activity method, interaction and discussion. **Teaching Materials:** Green Board, Chalk Pencil, Duster, Book, Journal, Laptop, Projector.

	Allotted	No. of Class	Detail of the topics to be taught	No. of
PaperCode/Ti tle	Unit/ Topic	required	& class required	tutorial s
CHEMISTRY CHMC1	UNIT:IV EXPERIMENTAL WORK (A)	10	 Derivation of kinetic gas equation [1] Maxwell distribution of molecular speed, different types of Speeds [2] Collision properties, Mean free path, determination of collision diameter [1] Transport phenomenon in gases [1] Coefficient of viscosity, law of equipartition of energy, degrees of freedom and average energy of a molecule [2] Molecular basis of heat capacity [1] Barometric formula and its uses for determination of Avogadro number.[2] Deviation from ideal behavior, [1] van der Waals and Dieterici's, Virial equation of state [1] Boyle's temperature [1] Critical constants, reduced equation of state [2] Co-efficient of compressibility and thermal expansion. (i) Determine the surface tension of various liquids by drop number method.[5] 	5

			(ii) Determination of viscosity of	
			aqueous solutions at room	
			_	
			temperature. [5]	
Basic Analytical	Unit: II ANALYSIS OF	5	Nutritional value of foods, idea about food processing [1]	1
Chemistry: SEC123	FOOD PRODUCTS		 Food preservations and adulteration.[1] a. Identification of adulterants in some common food items like coffee powder, asafoetida, 	
			chilli powder, Turmeric powder, coriander powder and pulse etc [2] b. Analysis of preservatives	
			and colouring matter.[2]	
CHEMISTRY	Unit: II	6	Derivation of Kinetic gas equation [2]	5
MINCHM1	Kinetic Theory of		Types of molecular velocities	
	gases		& deduction of simple	
			problems on – root mean	
			square speed, most probable	
			speed, collision frequency,	
			collision diameter, mean free path [2]	
			Heat capacity of gases [1]	
			Deviation from ideal	
			behaviour [2]	
			• van der Waals equation, van der Waals constant [1]	
			Critical state of gas, critical constants [1]	
			• Continuity of states & law of	
			corresponding states, degree of freedom, law of	
			equipartition of energy [1]	
			Viscosity of gases and effect	
			of temperature and pressure	
			on coefficient of viscosity).[1]	
CHEMISTRY	UNIT: I Phase	28	• Concept of phases,	2
-C-303	Equilibria		components and degrees of	
			freedom [2] • Derivation of Gibbs Phase	
			• Derivation of Gibbs Phase Rule for non-reactive and	
			reactive systems [2]	
			• Clausius-Clapeyron equation	
			and its applications to solid-	
			liquid, liquid-vapour and solid-	
			vapour equilibria [2]	
			• Phase diagram for one component systems with applications. [2]	

			DI II O
CHEMISTRY -C-303-LAB	Physical Chemistry Practical	28	 Phase diagrams for systems of solid-liquid equilibria involving eutectic, congruent and incongruent melting points, [6] Solid solutions [1] Three component systems, water-chloroform-acetic acid system, triangular plots. [2] Binary solutions: Gibbs-Duhem-Margules equation, its derivation and applications to fractional distillation of binary miscible liquids (ideal and nonideal) [4] Azeotropes, lever rule [2] Partial miscibility of liquids, CST [2] Miscible pairs & steam distillation. [2] Nernst distribution law: its derivation and applications [1] Acid hydrolysis of methyl acetate with hydrochloric acid [4] Saponification of ethyl acetate [4]
			Verify the Freundlich and Langmuir isotherms for adsorption of acetic acid on activated charcoal [6]
CHEMISTRY GE-301		8	 Thermodynamics of ideal solutions: Ideal solutions and Raoult's law [1] Deviations from Raoult's law – non-ideal solutions. [1] Vapour pressure-composition and temperature composition curves of ideal and non-ideal solutions. [1] Distillation of solutions. Azeotropes. [2] Partial miscibility of liquids: Critical solution temperature; effect of impurity on partial miscibility of liquids. [1] Immiscibility of liquids-Principle of steam distillation [1] Nernst distribution law and its applications & solvent extraction [2]
	Unit II: Phase Equilibrium	8	• Phases, components and degrees of freedom of a system [2]

CHEMISTRY GE-301 Lab	Section A: Physical Chemistry	10	 Criteria of phase equilibrium. Gibbs Phase Rule and its thermodynamic deviation. [1] Phase diagrams of one-component systems (water and sulphur) [2] Two component systems involving eutectics, congruent and incongruent melting points (lead –silver, FeCl3-H₂O and Na-K only) [3] Cell constant [2] conductometric titration [8]
CHEMISTRY -C-502	UNIT: I Quantum Chemistry	24	 Background and Postulates of QM [3] Schrödinger equation and its application to free particle and "particle-in-a-box" (1-D; 2D; 3D) [5] Simple harmonic oscillator: derivation and applications [6] Angular momentum: Commutation rules [5] Rigid rotator model of rotation of diatomic molecule and discussion of solution [5] Qualitative treatment of hydrogen atom and hydrogenlike ions: setting up of Schrödinger equation in spherical polar coordinates [2] Setting up of Schrödinger equation for many-electron atoms (He, Li). [2] Statement of variation theorem and application to simple systems [2]
CHEMISTRY -DSE-502	Unit IV: Future Trends in Green Chemistry	6	 Green Chemistry Introduction and synthesis [1] Green Chemistry in Sustainable development [2] Combinatorial green chemistry [2] Biominimetic and multifunctional reagents [1]
CHEMISTRY - C-502 Lab	Physical Chemistry Practical	28	• Study the 200-500 nm absorbance spectra of KMnO4 and K ₂ Cr ₂ O ₇ (in 0.1 M H2SO ₄) and λ determine the max values

	•	and	Lambert-Beer's determine tration of KMnO ₄	law the	
	•	Viva V			

Course: B. Sc.

Session: Even semester 2024

Subject: CHEMISTRY

Name of the Teacher: DR. SAHEEN SHEHNAZ BEGUM

Methods to be applied: Lecture, analytical and activity method, interaction and discussion.

Teaching Materials: Green Board, Chalk Pencil, Duster, Book, Journal, Laptop, Projector.

Paper Code/Title	Allotted Unit/ Topic	No. of Class required	Detail of the topics to be taught & class required	No. of tutorial s
CHEMISTRY CHMC2	UNIT: II SOLIDS	6	 Basic laws of crystallography, crystal system [1] Crystal lattice, Miller indices, and simple face centered and body centered cubic lattice [1] Number of points in a unit cell. [1] X-Ray diffraction study of crystals, Bragg's law [1] Determination of crystal structure- introduction to powder and single crystal methods of structure analysis [2] Crystal structure of NaCl & KCl [1] Packing of crystals, closed packed structure, radius ratio [1] Crystal defect-point defects [1] Conductors, semiconductors and insulators from band theory [2] 	4
SKILL ENHANCEM ENT COURSE	Unit: 1	9	 Review of energy sources & Classification of fuels and their calorific value [2] Coal: Uses, Carbonification & composition [2] Coal gas, producer gas and water gas—composition and uses. [1] Fractionation of coal tar [1] Uses of coal tar bases chemicals.[2] 	

CHEMISTRY	Unit II Solids	9	•	Forms of solids, unit cells,	1
MINCHM2				crystal systems [1]	1
MINCHIVIZ				Bravais lattice, types and	
			•	identification of lattice planes.	
				[2]	
			•	Miller and Weiss indices [1]	
			•	Laws of crystallography- Law	
				of constancy of interfacial	
				angles. Law of rational indices.	
				[2]	
			•	X-Ray diffraction by crystals.	
				Bragg's law.[1]	
			•	Structure of NaCl, KCl and	
				CsCl (qualitative treatment	
				only). [1]	
			•	Defects in crystals. Liquid	
				crystals [2]	
	Unit IV	20	•	pH -metry and (i) pH- metric	3
	Experimental Work			titration; (a) strong acid vs.	
				strong base (b) weak acid vs.	
				strong base [4]	
			•	(ii) Preparation of buffer	
				solutions of different pH (a)	
				sodium acetate-acetic acid (b)	
				ammonium chloride-	
				ammonium hydroxide[2]	
			•	Determine the surface tension	
				of various liquids by drop	
				number method. [4]	
			•	Determination of viscosity of	
				aqueous solutions at room	
				temperature. [4]	
CHEMISTRY	UNIT: II	28	_	-	3
	UNII. II	20	•	Quantitative aspects of	3
- C-403	Electrochemistry			Faraday's laws of electrolysis	
	Licetroenement y			[4]	
			•	Chemical cells, reversible and	
				irreversible cells with	
				examples [3]	
			•	EMF measurement, LJP &	
				Nernst Equation [2]	
			•	Application of EMF	
				measurements in determining	
				(i) free energy, enthalpy and	
				entropy of a cell reaction, (ii)	
				equilibrium constants, and (iii)	
				pH [6]	
			•	Hydrogen, quinone-	
				hydroquinone, glass and	
				SbO/Sb2O3 electrodes. [2]	
			•	Concentration cells with and	
				without transference [2]	
			•	Qualitative discussion of	
				potentiometric titrations (acid-	
				base, redox, precipitation) [2]	

CHEMISTRY - C-403 -LAB	Physical Chemistry Practical	16	 Determination of cell constant [4] conductometric titrations [12] Viva Voce [3]
CHEMISTRY -GE-401	UNIT: IV Kinetic Theory of Gases	8	 Kinetic Theory of Gases: Postulates and derivation [2] Deviation of real gases from ideal behaviour and causes [1] van der Waals equation of state for real gases. Boyle temperature [1] Critical phenomena, critical constants and their calculation from van der Waals equation [1]. Andrews isotherms of CO₂. Maxwell Boltzmann distribution laws of molecular velocities and molecular energies and importance & temperature dependence of these distributions. [3] Most probable, average and root mean square velocities Collision number and mean free path of molecules. [1] Viscosity of gases, effect of temperature/pressure on
	UNIT: VI Solids	8	 coefficient of viscosity [2] Forms of solids. Symmetry elements, unit cells, crystal systems [1] Bravais lattice types and identification of lattice planes [1] Laws of Crystallography - Law of constancy of interfacial angles [1] Law of rational indices. Miller indices. Bragg's law. [2] Structures of NaCl (qualitative treatment only). [1] Defects in crystals. Glasses and liquid crystals [2]
CHEMISTRY -GE-401-LAB	Section B: Physical Chemistry Practical	12	 Determination of the surface tension [6] Determination of viscosity of liquid [6] Viva Voce [3]
DSE-601	Inorganic Materials of Industrial Importance: UNIT IV: Batteries	6	 Primary and secondary batteries [1] Battery components and their role and Characteristics [1]

			Working of: Pb acid, Li- Battery, Solid state electrolyte battery. Fuel cells, Solar cell and polymer cell.[4]
CHEMISTRY-	Project Work	48	Project Work [48] 6
DSE-603			

hear Sheling Begin

Signature of Faculty

Course: B. Sc./ FYUGP Session: Odd semester 2023

Subject: CHEMISTRY

Name of the Teacher: Dr. PLABAN JYOTI SARMA

Methods to be applied: Lecture, analytical and activity method, interaction and discussion. **Teaching Materials:** Green Board, Chalk Pencil, Duster, Book, Journal, Laptop, Projector.

Paper Code/Title	Allotted Unit/ Topic	No. of Clarequired	Detail of the topics to be taught & class required	No. of tutorial s
CORE COURSE -1 CHMC1	Unit I: Periodic properties	6	 Effective nuclear charge (screening constant – Slater's rule [2]. Ionic and covalent radii, ionization [2] potential, electron affinity and electro negativity (Pauling, Mulliken's and Allred-Rochow Scales).[2]. 	3
	Unit I: Bonding and structure	4	 Ionic Bonding: Energy consideration in ionic bonding, [1] lattice Energy. Born - Haber cycle and its application, [1] polarizing power and polarizability. Fajan's rule, Bond moment, dipole moment and percentage ionic character. [2]. 	3
Fundamentals of Chemistry – 1 MINCHM1	Unit I: Atomic Structure	3	• Time independent Schrödinger wave equation (H=E). Significance of \(\foat\) and \(\foat\) Schrödinger equation for Hydrogen atom (qualitative treatment only). [3].	1
	Unit I: Chemical Bonding and Molecular Structure-1	6	 Ionic Bonding: Energy consideration in ionic bonding, [2]. Lattice Energy and Solvation Energy and their importance in the context of Stability and Solubility ofionic compounds. Polarizing power and polarizability. [2] Fajan's rule, dipole moment and percentage ionic character. Hydrogen Bonding. [2] 	2
	Inorganic Qualitative Analysis	10	 Analysis of samples containing 4 radicals including interferring radicals, phosphate, borate and fluoride.[8]. Viva-Voce [2] 	3

Analytical Chemistry Chemistry SEC123 Chiromatography Direction of mixture of metal ion (Fe ^{1*} and Al ^{3*}).[1] Unit III: Ionexchange Unit III: Ionexchange Unit III: Chemistry C-301 CHEMISTRY- C-301 Unit V: Inorganic Polymers Unit V: Inorganic Polymers Unit IV: Electroanalytical methods Unit IV: Electroanalytical methods Unit IV: Electroanalytical methods Unit IV: Electroanalytical methods Unit V: Separation Unit	Basic	Unit III:	4	• Definition, general introduction on 2
Chemistry SEC123 Paper chromatography, TLC etc. [21] a. Paper chromatographic separation of mixture of metal ion (Fe²- and Al²-).[1] b. To compare paint samples by TLC method. [11] Column, ion-exchange chromatography etc. [22]. Determination of ion exchange capacity of anion /cation exchange resin (using batch procedure if use officolumn is not feasible.] [2]. CHEMISTRY- C-301 CHEMISTRY- C-301 Unit III: Chemistry of s and p Block Elements Discount is not feasible.] [2]. CHEMISTRY- C-301 Unit V: Inorganic Polymers Polymers Polymers Discount is not feasible.] [2]. Allotropy and catenation. Complex, formation tendency of s and p block elements [51] Chemistry of Boron, Carbon, Nitrogen, Oxygen, halogens, Phosphorus, Sulphur. [13] Unit V: Inorganic Polymers, synthesis, structural aspects and applications of silicones and siloxanes. [4] Borazines, silicates and phosphazenes, and polysulphates. [4] Discount in the proper interpretation of Ca and Mg from their mixture [5] CHEMISTRY- DSE-501 Unit IV: Electro- analytical methods Discount in the mixture [5] Chemistry of electro-analytical methods and conductometric tirtations. Techniques used for the determination of equivalence points. Techniques used for the determination of pKa values. [10]	Analytical	Chromatography		
CHEMISTRY- Unit IV: Inorganic Polymers Polymers				paper chromatography, TLC etc.
Unit III: Ion- exchange Unit III: Ion- exchange Unit III: Ion- exchange Unit III: Ion- exchange Unit III: Chemistry of s and p Block Elements Unit V: Inorganic Polymers Unit V: Inorganic Polymers Unit IV: Electro- analytical methods Elements Unit IV: Electro- analytical methods Elements Unit IV: Electro- analytical methods	SEC123			separation of mixture of metal ion
exchange Chromatography etc.[2]				
Determination of ion exchange capacity of anion /cation exchange resin (using batch procedure if use of 2column is not feasible).[2]. CHEMISTRY- C-301		Unit III: Ion-	4	•
CHEMISTRY- C-301 Of s and p Block Elements Of different oxidation states, diagonal relationship anomalous behaviour of first member of each group. [12] Otherwistry of Boron, Carbon, Nitrogen, Oxygen, halogens, Phosphorus, Sulphur. [13] Unit V: Inorganic Polymers Otherwistry Oth		exchange		• Determination of ion exchange capacity of anion /cation exchange resin (using batch procedure if use
C-301 of s and p Block Elements of different oxidation states, diagonal relationship anomalous behaviour of first member of each group, [12] • Allotropy and catenation. Complex, formation tendency of s and p block elements [5] • Chemistry of Boron, Carbon, Nitrogen, Oxygen, halogens, Phosphorus, Sulphur, [13] Unit V: Inorganic Polymers Unit V: Inorganic Polymers **Polymers** Unit IV: Electroanalytical methods Of Elemistry of Boron, Carbon, Nitrogen, Oxygen, halogens, Phosphorus, Sulphur, [13] Odo / Indimetric Titrations [12] Inorganic polymers, synthesis, structural aspects and applications of silicones and siloxanes. [4] Inorganic polymers, synthesis, structural aspects and applications of silicones and siloxanes. [4] Inorganic polymers, sulphur, [13] Inorganic polymers,	CHEMISTRY-	Unit III: Chemistry	30	
Elements diagonal relationship anomalous behaviour of first member of each group. [12] Allotropy and catenation. Complex, formation tendency of s and p block elements [5] Chemistry of Boron, Carbon, Nitrogen, Oxygen, halogens, Phosphorus, Sulphur. [13] Unit V: Inorganic Polymers Types of inorganic polymers, synthesis, structural aspects and applications of silicones and siloxanes. [4] Borazines, silicates and phosphazenes, and polysulphates. [4] CHEMISTRY-C-301-LAB Unit IV: Electroanalytical methods Unit IV: Electroanalytical methods Unit IV: Electroanalytical methods Unit IV: Electroanalytical methods Unit IV: Electroanalytical methods Unit IV: Electroanalytical methods Classification of electro-analytical methods, basic principle of the determination of equivalence points. Techniques used for the determination of pKa values. [10] Unit V: Separation 15 Solvent extraction [7] 2	C-301	1		
member of each group. [12] Allotropy and catenation. Complex, formation tendency of s and p block elements [5] Chemistry of Boron, Carbon, Nitrogen, Oxygen, halogens, Phosphorus, Sulphur. [13] Unit V: Inorganic Polymers Unit V: Inorganic polymers, comparison with organic polymers, comparison with organic polymers, synthesis, structural aspects and applications of silicones and siloxanes. [4] Borazines, silicates and phosphazenes, and polysulphates. [4] Practical CHEMISTRY- C-301-LAB Practical Unit IV: Electro- analytical methods Solvent extraction of equivalence points. Techniques used for the determination of pKa values. [10] Unit V: Separation 15 Solvent extraction [7] 2		Elements		
Allotropy and catenation. Complex, formation tendency of s and p block elements [5] Chemistry of Boron, Carbon, Nitrogen, Oxygen, halogens, Phosphorus, Sulphur. [13] Unit V: Inorganic Polymers Unit V: Inorganic Polymers Organic Polymers Unit V: Inorganic Polymers, synthesis, structural aspects and applications of silicones and siloxanes. [4] Borazines, silicates and phosphazenes, and polysulphates. [4] Inorganic Chemistry Practical Organic Preparations [14] Viva Voce [2] CHEMISTRY-DSE-501 Unit IV: Electroanalytical methods Unit IV: Electroanalytical methods Unit IV: Electroanalytical methods Unit IV: Electroanalytical methods Unit IV: Electroanalytical methods, basic principle of pH metric, potentiometric and conductometric titrations. Techniques used for the determination of equivalence points. Techniques used for the determination of pKa values. [10] Unit IV: Separation Unit IV: Separation IS Solvent extraction [7] Unit IV: Separation Organic preparations [12] Inorganic Polymers, 20 Practical Property of Inorganic polymers, 21 Organic preparations [12] Inorganic Chemistry Practical aspects and applications of silicones and siloxanes. [4] Inorganic Chemistry Practical aspects and applications of silicones and siloxanes. [4] Inorganic Preparations [12] Organic preparations [12] Inorganic Polymers, 20 Inorga				
Complex, formation tendency of s and p block elements [5] Chemistry of Boron, Carbon, Nitrogen, Oxygen, halogens, Phosphorus, Sulphur. [13] Unit V: Inorganic Polymers Unit V: Inorganic Polymers Unit V: Inorganic Polymers, synthesis, structural aspects and applications of silicones and siloxanes. [4] Borazines, silicates and phosphazenes, and polysulphates. [4] CHEMISTRY- C-301-LAB Inorganic Chemistry Practical Unit IV: Electroanalytical methods ethods, basic principle of pH metric, potentiometric and conductometric titrations. Techniques used for the determination of equivalence points. Techniques used for the determination of pKa values. [10] Unit V: Separation Unit V: Separation 15 Solvent extraction [7] 2				
CHEMISTRY- Unit IV: Electro- analytical methods Unit IV: Electro- Uni				Complex, formation tendency of s
Unit V: Inorganic Polymers Unit V: Inorganic Polymers				-
Unit V: Inorganic Polymers Visual Polymers Secure Polymers Polymers, synthesis, structural aspects and applications of silicones and siloxanes. [4] Example Polymers Polymers, synthesis, structural Polymers, synthesis, structural Polymers, synthesis, structural aspects and applications of silicones and polymers, synthesis, structural aspects and applications of silicones and polymers, synthesis, structural aspects Polymers Po				
Polymers Polymers Comparison with organic polymers, synthesis, structural aspects and applications of silicones and siloxanes. [4] Borazines, silicates and phosphazenes, and polysulphates. [4] CHEMISTRY- C-301-LAB Practical CHEMISTRY- DSE-501 Unit IV: Electroanalytical methods Unit IV: Electroanalytical methods Unit IV: Electroanalytical methods Unit IV: Electroanalytical methods Diametric potentiometric and conductometric titrations. Techniques for phometric points. Techniques used for the determination of equivalence points. Techniques used for the determination of pKa values. [10] Unit V: Separation Unit V: Separation 15 Solvent extraction [7] 2 CHEMISTRY- DRAGING A paraginal polysurghers, synthesis, structural aspects and applications of silicones and siloxanes. [4] Inorganic Chemistry Inorganic Chemistry Practical Inorganic Chemistry Inorganic Chemistry Practical Inorganic Chemistry Inorganic Chemistry Inorganic Practical ploysurghanes and phosphazenes, and polysulphates. [4] Inorganic preparations [12] Inorganic Preparations [12] CHEMISTRY- Unit IV: Electroanalytical pethods Inorganic Chemistry Inorganic Chemistry Inorganic Chemistry Inorganic Preparations [12] Inorganic Preparations [12] CHEMISTRY- Unit IV: Electroanalytical pethods Inorganic preparations [12] Inorganic Preparations [12] Inorganic Preparations [12] CHEMISTRY- Unit IV: Electroanalytical pethods Inorganic Preparations [12] Inorganic Preparations [14] Inorganic Preparations [12] Inorganic Preparations [14] Inorganic Preparations [14] Inor		TI.: 4 X/. Tu	0	
polymers, synthesis, structural aspects and applications of silicones and siloxanes. [4] Borazines, silicates and phosphazenes, and polysulphates. [4] CHEMISTRY- C-301-LAB Practical Practical Unit IV: Electroanalytical methods Unit IV: Electroanalytical methods Divide the properties of phosphazenes of the determination of equivalence points. Techniques used for the determination of pKa values. [10] Unit V: Separation Provided the properties of silicones and siloxanes. [4] Inorganic preparations [12] Inorganic preparations [14] Viva Voce [2] Theory of thermo-gravimetry (TG), basic principle of instrumentation. Techniques for quantitative estimation of Ca and Mg from their mixture [5] Unit IV: Electroanalytical methods, basic principle of pH metric, potentiometric and conductometric titrations. Techniques used for the determination of equivalence points. Techniques used for the determination of pKa values. [10]			8	- JF
aspects and applications of silicones and siloxanes. [4] Borazines, silicates and phosphazenes, and polysulphates. [4] CHEMISTRY- C-301-LAB Practical Unit IV: Electro- analytical methods Unit IV: Electro- analytical methods Dividual methods 10 Classification of electro-analytical methods Techniques used for the determination of equivalence points. Techniques used for the determination of pKa values. [10] Unit V: Separation Live Separation Borazines, silicates and phosphazenes, and polysulphates. [4] Inorganic Chemistry Practical Techniques (12) Theory of thermo-gravimetry (TG), basic principle of instrumentation. Techniques for quantitative estimation of Ca and Mg from their mixture [5] Classification of electro-analytical methods, basic principle of pH metric, potentiometric and conductometric titrations. Techniques used for the determination of equivalence points. Techniques used for the determination of pKa values. [10]		Polymers		
siloxanes. [4] Borazines, silicates and phosphazenes, and polysulphates. [4] CHEMISTRY- C-301-LAB Inorganic Chemistry Practical Practical Unit IV: Electroanalytical methods Unit IV: Electroanalytical methods, basic principle of pH metric, potentiometric and conductometric titrations. Techniques used for the determination of equivalence points. Techniques used for the determination of pKa values. [10] Unit V: Separation 15 Solvent extraction [7] 2				
CHEMISTRY- C-301-LAB Practical Unit IV: Electroanalytical methods Unit IV: Electroanalytical methods, basic principle of pH metric, potentiometric and conductometric titrations. Techniques used for the determination of equivalence points. Techniques used for the determination of pKa values. [10] Unit V: Separation 15 Solvent extraction [7] 2 Inorganic Preparations [12] Theory of thermo-gravimetry (TG), basic principle of instrumentation. Techniques for quantitative estimation of Ca and Mg from their mixture [5] Classification of electro-analytical methods, basic principle of pH metric, potentiometric and conductometric titrations. Techniques used for the determination of equivalence points. Techniques used for the determination of pKa values. [10]				± ±
CHEMISTRY- Inorganic Chemistry 28 Inorganic preparations [12] 3 Inorganic preparations [14] Viva Voce [2] OS Inorganic preparations [14] Viva Voce [2] OS Inorganic preparations [14] OS OS OS OS OS OS OS				
CHEMISTRY- C-301-LAB Practical Practical Obsection District D				,
CHEMISTRY- C-301-LAB Practical Pract				± ±
C-301-LAB Practical Inorganic preparations [14] Viva Voce [2] CHEMISTRY- DSE-501 Unit IV: Electro- analytical methods Unit IV: Electro- analyt	CHEMISTRY-	Inorganic Chemistry	28	
CHEMISTRY- DSE-501 Unit IV: Electro- analytical methods O5 Theory of thermo-gravimetry (TG), basic principle of instrumentation. Techniques for quantitative estimation of Ca and Mg from their mixture [5] Unit IV: Electro- analytical methods O5 Classification of electro-analytical methods, basic principle of pH metric, potentiometric and conductometric titrations. Techniques used for the determination of equivalence points. Techniques used for the determination of pKa values. [10] Unit V: Separation 15 Solvent extraction [7] 2	C-301-LAB	Practical		
analytical methods (TG), basic principle of instrumentation. Techniques for quantitative estimation of Ca and Mg from their mixture [5] Unit IV: Electroanalytical methods Unit IV: Electroanalytical methods Classification of electro-analytical methods, basic principle of pH metric, potentiometric and conductometric titrations. Techniques used for the determination of equivalence points. Techniques used for the determination of pKa values. [10] Unit V: Separation 15 Solvent extraction [7] 2				• Viva Voce [2]
instrumentation. Techniques for quantitative estimation of Ca and Mg from their mixture [5] Unit IV: Electroanalytical methods Unit IV: Electroanalytical of pH metric, potentiometric and conductometric titrations. Techniques used for the determination of equivalence points. Techniques used for the determination of pKa values. [10] Unit V: Separation Instrumentation. Techniques for quantitative estimation of Ca and Mg from their mixture [5] Classification of electro-analytical of pH metric, potentiometric and conductometric titrations. Techniques used for the determination of equivalence points. Techniques used for the determination of pKa values. [10]			05	
quantitative estimation of Ca and Mg from their mixture [5] Unit IV: Electroanalytical methods 10 Classification of electro-analytical methods, basic principle of pH metric, potentiometric and conductometric titrations. Techniques used for the determination of equivalence points. Techniques used for the determination of pKa values. [10] Unit V: Separation 15 Solvent extraction [7] 2	DSE-501	analytical methods		
Unit IV: Electro- analytical methods Mg from their mixture [5] Classification of electro-analytical methods, basic principle of pH metric, potentiometric and conductometric titrations. Techniques used for the determination of equivalence points. Techniques used for the determination of pKa values. [10] Unit V: Separation 15 Solvent extraction [7] 2				=
Unit IV: Electro- analytical methods Oclassification of electro-analytical methods, basic principle of pH metric, potentiometric and conductometric titrations. Techniques used for the determination of equivalence points. Techniques used for the determination of pKa values. [10] Unit V: Separation 15 Solvent extraction [7] 2				
metric, potentiometric and conductometric titrations. Techniques used for the determination of equivalence points. Techniques used for the determination of pKa values. [10] Unit V: Separation 15 • Solvent extraction [7] 2			10	
conductometric titrations. Techniques used for the determination of equivalence points. Techniques used for the determination of pKa values. [10] Unit V: Separation 15 • Solvent extraction [7] 2		analytical methods		
Techniques used for the determination of equivalence points. Techniques used for the determination of pKa values. [10] Unit V: Separation 15 • Solvent extraction [7] 2				
determination of equivalence points. Techniques used for the determination of pKa values. [10] Unit V: Separation 15 • Solvent extraction [7] 2				
points. Techniques used for the determination of pKa values. [10] Unit V: Separation 15 • Solvent extraction [7] 2				=
Unit V: Separation 15 • Solvent extraction [7] 2				points. Techniques used for the
techniques • Chromatography [8]		_	15	[.]
		techniques		Chromatography [8]

CHEMISTRY- DSE-501- PRACT	Analytical Methods in Chemistry Practical	28	 Paper chromatographic separation of Fe³⁺, Al³⁺, Cr³⁺, Ag⁺, Hg2²⁺, and Pb²⁺. [6] Determine the pH of the given aerated drinks fruit juices, shampoos and soaps. [6] Determination of dissolved oxygen in water. [8] Analysis of soil: determination of pH of soil. [6] Viva Voce [2]
CHEMISTRY- DSE-502	Unit III: Examples of Green Synthesis/ Reactions and some real-world cases	12	 Green Synthesis of the following compounds: adipic acid, catechol, disodium iminodiacetate Ultrasound assisted reactions: sonochemical Simmons-Smith Reaction (Ultrasonic alternative to Iodine) Surfactants for carbon dioxide- replacing smog producing and ozone depleting solvents with CO2 for precision cleaning and dry-cleaning garments

Course: B. Sc./FYUGP Session: Even semester 2024

Subject: CHEMISTRY

Name of the Teacher: Dr. PLABAN JYOTI SARMA

Methods to be applied: Lecture, analytical and activity method, interaction and discussion.

Teaching Materials: Green Board, Chalk Pencil, Duster, Book, Journal, Laptop, Projector.

Paper Code/Title	Allotted Unit/ Topic	No. of Clarequired	Detail of the topics to be taught & class required	No. of tutorial s
CORE COURSE -2 CHMC2	Unit IV: EXPERIMENTAL WORK (A)	9	 a) Boron: wade's rule, nomenclature of closo, nido and arachno boranes, structure of boron hydrides [2] c) Carbon: Fullerenes (C60) [2] d) Silicon: silicones, classifications and structure of silicates. Zeolites, use of Zeolites as catalyst and molecular sieve, aluminosilicates. [2] e) Nitrogen: Hydrazine, hydroxylamine and hydrazoic acid. [1] f) Phosphorus: Phosphines, oxy acids of phosphorus, organophosphorus compounds. [2] (i) Estimation of Fe(II) or oxalic acid using standardized KMnO4 solution. [4] (ii) Estimation of Fe(II) with K2Cr2O7 using diphenylamine as internal indicator [4] 	4
Fundamentals of Chemistry - 2 MINCHM2	Unit I: Chemical Bonding and Molecular Structure-2	8	 Viva Voce [2] Covalent Bonding: VB Approach-Concept of hybridization [2] Resonance and Resonance energy: Study of some inorganic and organic compounds [2] Molecular Orbital Approach: LCAO method, bonding and antibonding MOs and their characteristics for s-s, s-p and p-p combination of atomic orbitals, non-bonding combination of 	3

Basic Analytical Chemistry (Fuel Chemistry) SEC223	Unit III: Lubricants	6	orbitals, MO treatment of homonuclear diatomic molecules and heteronuclear diatomic molecules such as CO, NO and NO ⁺ . [4]. • Lubricants: Classification of lubricants, lubricating oils (conducting and non-conducting), Solid and semisolid lubricants, synthetic lubricants.[3] • Properties of lubricants – viscosity index, cloud point, pore point.[3]	2
CHEMISTRY -C-401	Unit II: Transition Elements	18	 General group trends with special reference to electronic configuration, colour, variable valency, magnetic and catalytic properties, and ability to form complexes. [8] Stability of various oxidation states and e.m.f. (Latimer and Bsworth diagrams). Difference between the first, second and third transition series. [5] Chemistry of Ti, V, Cr, Mn, Fe and Co in various oxidation states (excluding their metallurgy) [5] 	4
	Unit IV: Bioinorganic Chemistry	10	 Metal ion present in biological systems, classification of elements according to their action in biological system. Geo chemical effect on distribution of metals. Sodium/ K-pump, carbonic anhydrase and carboxypeptidase. [5] Excess and deficiency of some trace metals. Toxicity of metal ions (Hg, Pb, Cd and As), reasons for toxicity, use of chelating agents in medicine. [3] Iron and its application in biosystems, Hemoglobin, storage and transfer of iron. [2] 	3
CHEMISTRY- C-401-LAB	Inorganic Chemistry practical	28	 Gravimetric Analysis [8] Inorganic Preparation [8] Chromatography of metal ions [8] Viva-voce [4] 	4
CHEMISTRY- C-601	Unit I: Theoretical Principles in Qualitative Analysis (H ₂ S Scheme)	10	 Basic principles involved in analysis of cations and anions and solubility products, common ion effect. [4] Principles involved in separation of cations into groups and choice of group reagents. [3] 	3

			Interfering anions (fluoride, borate, oxalate and phosphate) and need to remove them after Group II. [3]
	Unit II: Organometallic compounds	22	 Definition and classification of organometallic compounds on the basis of bond type. Concept of hapticity of organic ligands. [3] Metal carbonyls [10] Zeise's salt [3] Metal Alkyls. [3] Ferrocene [3]
CHEMISTRY- C-601-LAB	Inorganic Chemistry Practical	28	 Qualitative Inorganic Analysis: Salt analysis [25] Viva – voce [3]
CHEMISTRY- DSE-601	Unit II: Fertilizers	8	 Different types of fertilizers [2] Urea, ammonium nitrate, calcium ammonium nitrate, ammonium phosphates; polyphosphate, superphosphate, compound and mixed fertilizers, potassium chloride, potassium sulphate. [6]
CHEMISTRY- DSE-601-LAB	Inorganic Materials of Industrial Importance practical	28	 Determination of free acidity in ammonium sulphate fertilizer. [6] Determination of free acidity in ammonium sulphate fertilizer. [6] Determination of composition of dolomite [6] Analysis of Cement [3] Preparation of pigment [4] Viva Voce [3]
CHEMISTRY- DSE-603	Project Work	48	Project Work [48] 6
CHEMISTRY- GE-401	Series Elements (3d series)	12	 General group trends with special reference to electronic configuration, variable valency, colour, magnetic and catalytic properties, ability to form complexes and stability of various oxidation states (Latimer diagrams) for Mn, Fe and Cu [8] Lanthanoids and actinoids: Electronic configurations, oxidation states, colour, magnetic properties, lanthanide contraction, separation of lanthanides (ion exchange method only). [4]
CHEMISTRY- GE-401-LAB	Section A: Inorganic Chemistry	14	 Semi-micro qualitative analysis using H₂S of mixtures [11] Viva Voce [3]

