

NAAC accredited with 'B' Grade

TEACHING PLAN DEPARTMENT OF CHEMISTRY JULY 2022 - JUNE 2023

GARGAON COLLEGE TEACHING PLAN

Course: B. Sc.

Session: Odd semester 2022

Subject: CHEMISTRYName of the Teacher: DR. ANNA GOGOIMethods to be applied: Lecture, analytical and activity method, interaction and discussion.Teaching Materials: Green Board, Chalk Pencil, Duster, Book, Journal, Laptop, Projector.

PaperCode/Ti tle	Allotted Unit/ Topic	No. of Class required	Detail of the topics to be taught & class required	No. of tutorial s
CHEMISTRY C-102	Unit I: Liquid State	6	 Qualitative treatment of the structure of the liquid state [1] Radial distribution function [1] physical properties of liquids: vapour pressure, Surface tension, viscosity [4] Explanation of cleansing action of detergents [1] 	3
	UNIT:IV Ionic equilibrium	20	 Strong, moderate and weak electrolytes, degree of ionization, factors affecting degree of ionization [2] ionization constant and ionic product of water [4] pH scale, common ion effect; dissociation constants of mono-, di-and triprotic acids (exact treatment) [5] Salt hydrolysis, Henderson equation [4] Buffer solutions, solubility product [4] 	3
CHEMISTRY C102-LAB	Physical Chemistry	10	 Surface tension measurements [4] Determination of viscosity [4] pH-metric titration [8] 	5
CHEMISTRY -C-303	UNIT: II Chemical Kinetics	18	 Order and molecularity of a reaction, rate laws [2] Zero, First and Second order reaction [4] steady-state approximation [1] complex reactions, Opposing reactions, parallel reactions, consecutive reactions, chain reactions [8] 	5

			 Arrhenius equation, activation energy, Collision theory of reaction rates [3] Lindemann mechanism, absolute reaction rates [3]
CHEMISTRY -C-303-LAB	Physical Chemistry Practical	28	 Acid hydrolysis of methyl 3 acetate with hydrochloric acid [4] Saponification of ethyl acetate [4] Verify the Freundlich and Langmuir isotherms for adsorption of acetic acid on activated charcoal [6]
CHEMISTRY GE-301	UNIT: 3 Conductance	6	 Conductivity, equivalent and molar conductivity [2] Kohlrausch's law, Transference number, Hittorf method, Moving boundary methods [4] Ionic mobility, solubility and solubility products of sparingly soluble salts, hydrolysis constant of a salt. Conductometric titrations [6]
CHEMISTRY GE-301 Lab	Section A: Physical Chemistry	10	Cell constant [2] conductometric titration [8]
CHEMISTRY -C-502	UNIT: II Molecular Spectroscopy	24	 Electromagnetic radiation, Born Oppenheimer approximation [3] Rotation spectroscopy [5] Vibrational spectroscopy [6] Vibration-rotation spectroscopy [5] Electronic spectroscopy [5] NMR spectroscopy [4]
CHEMISTRY - C-502 Lab	Physical Chemistry Practical	28	 Study the 200-500 nm 5 absorbance spectra of KMnO4 and K2Cr2O7 (in 0.1 M H2SO4) and λ determine the max values Verify Lambert-Beer's law and determine the concentration of KMnO4 Viva Voce [2]

GARGAON COLLEGE TEACHING PLAN

Course: B. Sc.

Session: Even semester 2023

Subject: CHEMISTRY

Name of the Teacher: DR. ANNA GOGOI

Methods to be applied: Lecture, analytical and activity method, interaction and discussion.

Teaching Materials: Green Board, Chalk Pencil, Duster, Book, Journal, Laptop, Projector.

Paper	Allotted	No. of Class	Detail of the topics to be taught	No. of
Code/Title	Unit/ Topic	required	& class required	tutorial
		_		S
CHEMISTRY - C-202	UNIT: I Chemical Thermodynamics	36	 Intensive and extensive variables; state and path functions; isolated, closed and open systems [3] zeroth law of thermodynamics [2] First law: Concept of heat, q, work, w, internal energy, U [3] enthalpy, H, heat capacities [3] enthalpy, H, relation between heat capacities, calculations of q, w, U and H for free expansion of gases (ideal and van der Waals) under isothermal and adiabatic conditions [6] Heats of reactions: standard states; enthalpy of formation of molecules and ions [4] bond energy, bond dissociation energy and resonance energy [3] Adiabatic flame temperature, explosion temperature [3] Second Law: Concept of entropy change for reversible and irreversible processes [4] Third Law, Gibbs and Helmholtz energy, Free energy change and spontaneity 	<u>s</u> 4
			[5]	

			 Gibbs-Helmholtz equation; Maxwell relations [5] 	
CHEMISTRY - C-202 Lab	Physical Chemistry Laboratory	12	 Determination of heat capacity of the calorimeter and enthalpy of neutralization of hydrochloric acid with sodium hydroxide[4] Calculation of the enthalpy of ionization of ethanoic acid [4] Study of the solubility of benzoic acid in water and 	4
CHEMISTRY- C- GE- 201	UNIT: 3 Ionic Equilibrium	12	 determination of ∆ H.[4] Strong, moderate and weak electrolytes, degree of ionization, factors affecting degree of ionization [4] ionization constant and ionic product of water [2] Ionization of weak acids and bases [2] pH scale, common ion effect, Salt hydrolysis [3] Buffer solutions, Solubility and solubility product of sparingly soluble salts[4] 	3
CHEMISTRY -C- GE-201 Lab	Section A: Physical Chemistry	15	 Determination of heat capacity [4] Calculation of the enthalpy of ionization of ethanoic acid.[4] Study of the solubility of benzoic acid in water[4] 	3
CHEMISTRY - C-403	UNIT: 1 Conductance	20	 Arrhenius theory of electrolytic dissociation, Conductivity, equivalent and molar conductivity [4] Kohlrausch law of independent migration of ions, Debye-Hückel-Onsager equation [3] Wien effect, Debye- Falkenhagen effect, Walden's rules [2] Ionic velocities, mobilities, transference number and its determination, Hittorf method, Moving Boundary method [6] degree of dissociation of weak electrolytes, ionic product of water, hydrolysis constants of salts and conductometric titrations[6] 	3
CHEMISTRY - C-403 -LAB	Physical Chemistry Practical	16	 Determination of cell constant [4] conductometric titrations [12] 	4

			• Viva Voce [3]	
CHEMISTRY -GE-401	UNIT: V Liquids	6	 surface tension and its determination [2] Viscosity of a liquid and its determination [2] Effect of temperature on surface tension and coefficient of viscosity of a liquid [2] 	1
	UNIT: VII Chemical Kinetics	8	 The concept of reaction rates, Effect of temperature, pressure, catalyst and other factors on reaction rates [2] Order and molecularity of a reaction, Zero order reaction, First order reaction, Second order reaction [4] Half–life of a reaction, determination of order of a reaction [2] activation energy and its calculation from Arrhenius equation [1] Collision theory and Activated Complex theory [2] 	2
CHEMISTRY -GE-401-LAB	Section B: Physical Chemistry Practical	12	 Determination of the surface tension [6] Determination of viscosity of liquid [6] Viva Voce [3] 	2
CHEMISTRY- DSE-603	Project Work	48	• Project Work [48]	6

Å.

Signature of the teacher

GARGAON COLLEGE TEACHING PLAN Course: B. Sc. Session: Odd semester 2022

Subject: CHEMISTRY

Name of the Teacher: Dr. Arandao Narzary

Methods to be applied: Lecture, practical demonstration, interaction and discussion. Teaching Materials: White Board, Marker Pen, Duster, Book, Journal, Laptop, Projector, Pointer

Paper Code/Title	Allotted Unit/ Topic	No. of Class required	Detail of the topics to be taught & class required	No. of tutorials
CHEMISTRY	Unit I: Chemistry	14	Nucleophilic substitution reaction[2]	4
C-302 of Halogenated Hydrocarbons Part:A Alkyl Halide and Aryl halide	Hydrocarbons Part:A Alkyl		• S _N i mechanisms with stereochemical aspects and effect of solvent etc.[2]	
		• Nucleophilic substitution vs. elimination[2]		
			 Methods of preparation including Hunsdiecker Reaction[1] 	
			• Preparation, including preparation from diazonium salts.[1]	
			• Nucleophilic aromatic substitution; SNAr[1]	
			• Benzyne mechanism[2]	
	Part:B Organometallic compounds	2	 Relative reactivity of alkyl, allyl/benzyl, vinyl and aryl halides towards nucleophilic substitution reactions.[3] Organometallic compounds of Mg and Li – Use in synthesis of organic compounds.[2] 	
	Unit III: Carbonyl Compounds: Part A:	12	 Structure, reactivity and preparation[1] Mechanisms of Aldol and Benzoin condensation, Knoevenagel condensation, Claisen-Schmidt, Perkin, Cannizzaro and Wittig reaction, Beckmann and Benzil-Benzilic acid rearrangements, haloform reaction and Baeyer Villiger oxidation, α- substitution reactions, Clemmensen, Wolff-Kishner, MPV[8] LiAlH4, NaBH4, PDC , PCC , SeO₂, Pb(OAc)4 & HIO4 .(Synthetic applications only)[2] Addition reactions of unsaturated carbonyl compounds: Michael addition. 	7

	Part B	2	 Unsaturated Aldehydes (Acrolein, Crotonaldehyde, Cinnamaldehyde) Unsaturated Ketone (MVK)[1] Active methylene compounds: Keto-enol 	
			tautomerism. Preparation and synthetic applications of diethyl malonate and ethyl acetoacetate[2]	
CHEMISTRY C-302-LAB	Organic Chemistry practical	17	• Functional group tests for alcohols, carbonyl, and carboxylic acid group[8]	2
			• Preparation by Acetylation[1]	
			• Preparation by Benzolyation [2]	
			• Preparation by Oxidation[1]	
			• Preparation by Nitration[1]	
			• Preparation by Hydrolysis[1]	
			• Preparation by Benzil-Benzilic acid rearrangement[1]	
			• Viva Voce [2]	
CHEMISTRY- C-501	Unit I: Nucleic Acids	9	• Components of nucleic acids, Nucleosides and nucleotides[3]	4
			• Structure, synthesis and reactions of: Adenine, Guanine, Cytosine, Uracil and Thymine[2]	
			• Structure of polynucleotides. Structure of DNA (Watson & Model) and RNA, Genetic Code Biological role of DNA and[2]	
			• RNA, Replication, Transcription and Translation [2]	
	Unit II: Amino Acids, Peptides and Proteins	16	 Amino acids, Peptides and their classification.α-Amino Acids [4] 	5
			• Synthesis, properties and reactions [3]	
			• Study of peptides: determination of their primary structures-end group analysis [4]	
			• Methods of peptide synthesis. Synthesis of peptides using N-protecting, C- protecting and C-activating groups - Solid-phase synthesis [5]	
	Unit IV: Lipids	8	• Introduction to oils and fats; common fatty acids present in oils and fats[3]	2
			• Hydrogenation of fats and oils, Saponification value, acid value, iodine number. Reversion and rancidity[5]	
	Unit V: Disconnection approach in Organic Synthesis	10	• Elementary idea about disconnection, Synthon and Synthetic equivalent, Functionall group interconversion (FGI), Functional group addition (FGA)[3]	6
			• Simple examples off retrosynthesis of C- C bond formation (Corey House, Grignard, aldol condensation)[2]	

			•	Retrosynthesis of monofunctionalised [3]	
			•	Bi-functionalized (1,1 and 1,2) compounds.[2]	
	Organic Chemistry	8	•	Estimation of glycine by Sorenson's formalin method.[2]	2
	practical		•	Study of the titration curve of glycine[1]	
CHEMISTRY-			•	Study of the action of salivary amylase on starch at optimum conditions[1]	
			•	Effect of temperature on the action of salivary amylase[1]	
			•	Saponification value of an oil or a fat.[1]	
			•	Viva [2]	
	Green Chemistry practical	10	•	Preparation of biodiesel from vegetable oil[2]	2
CHEMISTRY- DSE-502-LAB			•	Preparation of acetanilide from aniline using acetic acid in presence of zinc dust[1]	
			•	Photoreduction of benzophenone to benzopinacol in the presence of sunlight[5]	
			•	Viva[2]	
	Section B: Organic Chemistry	10	•	Conformation with respect to ethane, butane and cyclohexane[2]	3
	Unit IV: Stereochemistry		•	Interconversion of Wedge Formula, Newmann, Sawhorse and Fischer representations[2]	
CHEMISTRY-			•	Concept of chirality[1]	
GE-101			•	Configuration: Geometrical and Optical isomerism; Enantiomerism, Diastereomerism and Meso Compounds. Threo and erythron[3]	
			•	Nomenclature: D and L; Cis-trans ;CIP Rules: R/S and E/Z[2]	
	Unit V: Aliphatic	12	•	Preparation and reactions of alkane[4]	4
	Alkanes, Alkene		•	Preparation and reactions of alkene[8]	
	Chemistry Practical	15	•	Detection of characterized element (N, S, Cl, Br, I) in an organic compound[10]	2
GE-101-LAB			•	Separation of mixtures by Chromatography: Measure the R _f value in each case[3]	
	Section D.	10	•	Viva[2]	2
CHEMISTRY- GE-301	Organic Chemistry	10	•	<i>Carbohydrates</i> : Classification, and General Properties[3]	3

	Unit VII: Carbohydrates		•	Glucose and Fructose (open chain and cyclic structure)[4]	
			•	Determination of configuration of monosaccharides, absolute configuration of Glucose and Fructose[2]	
			•	Mutarotation, ascending and descending in monosaccharides[1]	
	Unit VIII: Amino Acids, Peptides and Proteins	12	•	Introduction and Preparation of Amino Acids: Strecker synthesis using Gabriel's phthalimide synthesis [4]	3
			•	Zwitterion, Isoelectric point and Electrophoresis[2]	
			•	<i>Reactions of Amino acids</i> : ester of – COOH group, acetylation of –NH2 group, complexation with Cu ₂₊ ions, ninhydrin test[2]	
			•	Overview of Primary, Secondary, Tertiary and Quaternary Structure of proteins[4]	
CHEMISTRY- GE-301-LAB	Chemistry Practical	10	•	Systematic Qualitative Organic Analysis of Organic Compounds[10	2

GARGAON COLLEGE TEACHING PLAN Course: B. Sc. Session: Even semester 2023

Subject: CHEMISTRY

Name of the Teacher: **Dr. Arandao Narzary**

Methods to be applied: Lecture, practical demonstration, interaction and discussion. Teaching Materials: White Board, Marker Pen, Duster, Book, Journal, Laptop, Projector, Pointer.

Paper	Allotted	No. of Class	Detail of the topics to be taught & class required	No. of
Code/Title	Unit/ Topic	required		tutorials
CHEMISTRY- C-201	UnitII: Stereochemistry	16	 Definition and classification of streoisomerism[1] Representation of organic molecules in two & three dimensions, Fischer, Newmann and Sawhorse Projection formulae and their interconversions[2] Geometrical isomerism: Restricted rotation about C=C bonds, Physical & Chemical properties of Geometrical isomers, Cis–trans and, syn-anti isomerism, E/Z notations with C.I.P rules. <i>Optical [3]</i> 	4

			• <i>Isomerism:</i> Optical Activity, Specific Rotation, Chirality/Asymmetry, Enantiomers, Molecules with two or more chiral-centres[4]	
			• Distereoisomers, meso structures & Epimers, Racemic mixture and resolution[3]	
			• Threo & Erythro forms, Relative and absolute configuration: D/L and R/S designations[3]	
	Unit III: Chemistry of Aliphatic Hydrocarbons A. Carbon- Carbon sigma bond	4	• Chemistry of alkanes: Formation of alkanes, Wurtz Reaction, Wurtz-Fittig Reactions, CoreyHouse Reaction, Free radical substitutions: Halogenation - relative reactivity and selectivity[4]	5
	B. Carbon-	19	د	
	Carbon pi bonds:		• Formation of alkenes and alkynes by elimination reactions, Mechanism of E1, E2, E1cb[2]	
			• Reactions. Saytzeff and Hofmann eliminations. Pyrolysis of esters, Chugaev, Wittig and Heck Reaction [4]	
			• <i>Reactions of alkenes:</i> Electrophilic additions, Markownikoff/ Anti Markownikoff addition, Regioselective and Streoselective addition reactions. oxymercuration-demercuration, hydroboration-oxidation, ozonolysis, reduction, syn and anti-hydroxylation, Simple effect ofStreoselectivity & Streospecificit [6]	
			• 1,2-and 1,4-addition reactions in conjugated dienes and, Diels-Alder reaction; Allylic and benzylic bromination and mechanism, e.g. propene, 1-butene, toluene, ethyl benzene[3]	
			• <i>Reactions of alkynes:</i> Acidity, Electrophilic and Nucleophilic additions. Hydration to form carbonyl compounds, Alkylation of terminal alkynes[4]	
CHEMISTRY- C-201-LAB	Organic Chemistry	9	• Purification of organic compounds by crystallization[2]	2
	Practical		• Determination of the melting points[1]	
			• Effect of impurities on the melting point – mixed melting point of two unknown organic compounds[1]	
			• Separation of a mixture of two amino acids by paper chromatography[1]	

			• Separation of a mixture of two sugars by paper chromatography[1]	
			• Separation of a mixture of o-and p- nitrophenol or o-and p-aminophenol by thin layer chromatography (TLC)[1]	
			• Viva[2]	
CHEMISTRY- C-402	UnitII: Polynuclear Aromatic Hydrocarbons	14	• Preparation and structure elucidation & Reactions of Polynuclear hydrocarbons : naphthalene [4]	2
			• Preparation and structure elucidation & Reactions of Polynuclear hydrocarbons : Phenanthrene [4]	
			• Preparation and structure elucidation & Reactions of Polynuclear hydrocarbons : anthracene [4]	
			• Important derivatives of naphthalene and anthracene [2]	
	Unit III: Heterocyclic Compound-I	12	• Classification and nomenclature, Structure, aromaticity in 5-numbered and 6-membered rings containing one heteroatom[2]	4
			• Synthesis, reactions and mechanism of substitution reactions of: Furan, Pyrrole (Paal-Knorr synthesis, Knorr pyrrole synthesis, Hantzsch synthesis), Thiophene [8]	
	Heterocyclic Compound-II	12	 Derivatives of furan: Furfural and furoic acid [2] . 	
			• Synthesis and reaction of Pyridine, Pyrimidine, indole, Fischer indole quinoline and isoquinoline [12]	
	Unit V: Terpenes	7	 Occurrence, classification, isoprene rule; Elucidation of stucture and synthesis of Citral, Neral and α-terpineol[7] 	1
CHEMISTRY- C-402-LAB	Organic Chemistry Practical	14	• Qualitative analysis of unknown organic compounds [14]	2
CHEMISTRY- C-602	Unit I: Organic Spectroscopy NMR	15	Basic principles of Proton Magnetic Resonance[[2]	2
	Spectroscopy:		• Chemical shift and factors influencing it; Spin – Spin coupling and coupling constant; Anisotropic effects in alkene, alkyne, aldehydes and aromatics[3]	
			• Interpetation of NMR spectra of simple compounds[2]	
			• Applications of IR, UV, NMR and Mass for identification of simple organicmolecules[8]	

	Unit II: Carbohydrates	16	•	Occurrence, classification and their biological importance [2]	2
			•	Monosaccharides: Constitution and absolute configuration of glucose and fructose [4]	
			•	Epimers and anomers, mutarotation [2]	
			•	Determination of ring size of glucose and fructose[4]	
			•	Haworth projections and conformational structures; Assecnding and descending in monosaccharide[1]	
			•	Interconversions of aldoses and ketoses; Killiani- Fischer synthesis and Ruff degradation [3]	
	Unit III: Dyes	8	•	Classification, Colour and constitution; Mordant and Vat Dyes [2]	1
			•	Synthesis and applications of: Azo dyes – Methyl Orange and Congo Red [1]	
			•	Triphenyl Methane Dyes -Malachite Green, Rosaniline and Crystal Violet[1]	
			•	Phthalein Dyes – Phenolphthalein and Fluorescein[1]	
			•	Natural dyes -structure[1]	
			•	Elucidation and synthesis of Alizarin and Indigotin; Edible Dyes with examples [2]	
CHEMISTRY- C-602-LAB	Organic Chemistry Practical	19	•	Qualitative analysis of unknown organic compounds containing monofunctional groups [14]	3
			•	Extraction of caffeine from tea leaves [1]	
			•	Identification of simple organic compounds by IR spectroscopy and NMR Spectroscopy (Spectra to be provided) [2]	
	D :	20	•	Viva [2]	
CHEMISTRY- DSE-603	Dissertation (<i>Project Work</i>)	30	•	Project Work [30]	2
CHEMISTRY- GE-201	Section B: Organic	8	•	Preparation of aromatic hydrocarbon [2]	2
02 201	<i>Chemistry</i> Unit IV: Aromatic Hydrocarbons		•	Reactions: Electrophilic substitution: nitration, halogenation and sulphonation. Friedel-Craft's Side chain oxidation of alkyl benzenes [6]	
	Unit V: Alkyl and Aryl Halides	8	•	Nucleophilic Substitution (SN1, SN2 and SNi) reactions [2]	2
			•	Preparation of alkylhalide from alkenes and alcohols. Reactions: hydrolysis,	

	1			
			nitrite & nitro formation, nitrile & isonitrile formation. Williamson's ether synthesis: Elimination vs substitution.[2]	
			• <i>Aryl Halides: Preparation:</i> (Chloro, bromo and iodo-benzene case): from phenol, Sandmeyer & Gattermann reactions.[2]	
			• Aromatic nucleophilic substitution and effect of nitro substituent. Benzyne Mechanism[1]	
			• Reactivity Relative strength of C- Halogen bond in alkyl, allyl, benzyl, vinyl and aryl halides[1]	
CHEMISTRY- GE-201-LAB	Chemistry Practical	5	• <i>Purification</i> of organic compounds by crystallization [2]	2
			• Determination of melting and boiling points[1]	
			• Preparation by Benzoylation of amines/phenols[1]	
			• Preparation of Oxime and 2, 4- dinitrophenylhydrazone of aldehyde/ketone[1]	
			• Viva [2]	

Abandoo Nomery

(Signature)

GARGAON COLLEGE TEACHING PLAN Course: B. Sc. Session: Odd semester 2022

Subject: CHEMISTRY

Name of the Teacher: Mr. Rituraj Tahu

Methods to be applied: Lecture, practical demonstration, interaction and discussion. Teaching Materials: White Board, Marker Pen, Duster, Book, Journal, Laptop, Projector, Pointer, etc

Paper Code/Title	Allotted Unit/ Topic	No. of Class required	Detail of the topics to be taught & class required	No. of tutorials
CHEMISTRY C-302	Unit II: Alcohols, Phenols, Ethers and Epoxides	14	 Alcohols preparation, properties and relative reactivity of 1°, 2°, 3° alcohols Bouvaelt-Blanc Reduction Preparation and properties of glycols Oxidation by OsO4, alkaline KMnO4, periodic acid and lead Tetraacetate Pinacol Pinacolone Rearrangement <i>Trihydric alcohols</i> : Glycerol /Preparation & Properties [8] Phenols Preparation and properties; Acidity and factors effecting it Ring substitution reactions, Reimer-Tiemann and Kolbe's–Schmidt Reactions Fries and Claisen rearrangements with mechanism [3] Ether and Epoxides Preparation and reactions with acids Reaction of epoxide with alcohols ammonia derivatives and LiAlH4 [3] 	4
	Carboxylic Acids		• Preparation, physical properties and reactions of monocarboxylic acids	

	and their Derivatives:		(Acidity and factors affecting it) Typical reactions of dicarboxylic acids, hydroxy acids and unsaturated acids [4]	
			• succinic, phthalic, lactic, malic, tartaric, citric, maleic and fumaric acids Preparation and reactions of acid chlorides, anhydrides, esters and amides [4]	
		17	• Comparative study of nucleophilic sustitution at acyl group - Mechanism of acidic and hydrolysis of esters Claisen condensation, Dieckmann and Reformatsky reactions, Hofmann bromamide degradation and Curtius rearrangement [4]	
CHEMISTRY C-302-LAB	Chemistry practical	17	• Functional group tests for alcohols, carbonyl, and carboxylic acid group [8]	2
	1		• Preparation by Acetylation [1]	
			• Preparation by Benzolyation [2]	
			• Preparation by Oxidation [1]	
			• Preparation by Nitration [1]	
			• Preparation by Hydrolysis [1]	
			• Preparation by Benzil-Benzilic acid rearrangement [1]	
			• Viva Voce [2]	
CHEMISTRY- C-501	Unit III: Enzymes	8	 Introduction, classification and characteristics of enzymes. Salient features of active site of enzymes [2] 	4
			• Mechanism of enzyme action (taking trypsin as example), factors affecting enzyme action, coenzymes and cofactors and their role in biological reactions, specificity of enzyme action (including stereospecificity) [3]	
			• enzyme inhibitors and their importance, phenomenon of inhibition (competitive, uncompetitive and non-competitive inhibition including allosteric inhibition) [3]	
	Unit VI: Pharmaceutical Compounds: Structure and Importance	16	 Classification, structure and therapeutic uses of antipyretics: Paracetamol (with synthesis), Analgesics: Ibuprofen (with synthesis), Antimalarials 	8

			 Antacids: Ranitidine; Antibacterial: Povidone—Iodine Solution, Synthesis and mode of action of Sulphanilamide and other Sulpha drugs (sulphapyridine sulphathiazole) Chloroquine (with synthesis). An elementary treatment of Antibiotics and detailed study of chloramphenicol, Medicinal values of curcumin (haldi), azadirachtin (neem), vitamin C. 	
	Organic Chemistry practical	8	• Estimation of glycine by Sorenson's formalin method.[2]	2
			• Study of the titration curve of glycine [1]	
CHEMISTRY- C-501-LAB			• Study of the action of salivary amylase on starch at optimum conditions [1]	
			• Effect of temperature on the action of salivary amylase [1]	
			• Saponification value of an oil or a fat.[1]	
			• Viva [2]	
	Unit III: Fundamentals of Organic Chemistry	8	 Physical Effects, Electronic Displacements: Inductive Effect, Electromeric Effect, Resonance and Hyperconjugation. Cleavage of Bonds: Homolysis and Heterolysis [2] Structure, shape and reactivity of 	3
CHEMISTRY- GE-101			organic molecules: Nucleophiles and electrophiles. Reactive Intermediates: Carbocations, Carbanions and free radicals [2]	
			• Strength of organic acids and bases: Comparative study with emphasis on factors affecting <i>p</i> K values. Aromaticity: Benzenoids and Hückel's rule [2]	
CHEMISTRV	Chemistry Practical	15	• Detection of characterized element (N, S, Cl, Br, I) in an organic compound [10]	2
GE-101-LAB			• Separation of mixtures by Chromatography: Measure the R <i>f</i> value in each case [3]	
			• Viva [2]	

	Section B: Organic Chemistry Unit V: Carboxylic acids and their derivatives	6	 Carboxylic acids (aliphatic and aromatic): Preparation: Acidic and Alkaline hydrolysis of esters. Reactions: Hell – Vohlard - Zelinsky Reaction [2] Carboxylic acid derivatives (aliphatic): (upto 5 carbons) 	3
			Preparation: Acid chlorides, anhydrides, Esters and Amides from acids and their interconversion [2]	
CHEMISTRY-			 Reactions: Comparative study of nucleophilicity of acyl derivatives. Reformatsky Reaction, Perkin Condensation [2] 	
GE-301	Unit VI: Amines and Diazonium Salts	6	 Amines (Aliphatic and Aromatic): (Up to 5 carbons): Preparation: from alkyl halides, Gabriel's Phthalimide synthesis, Hofmann Bromamide reaction. Reactions: Hofmann vs. Saytzeff elimination, Carbylamine test, Hinsberg test, with HNO2, Schotten – Baumann Reaction. Electrophilic substitution (case aniline): nitration, bromination, sulphonation [4] 	3
			• <i>Diazonium salts</i> : Preparation: from aromatic amines. Reactions: conversion to benzene, phenol, dyes [2]	
CHEMISTRY- GE-301-LAB	Chemistry Practical	10	• Systematic Qualitative Organic Analysis of Organic Compounds[10	2

GARGAON COLLEGE TEACHING PLAN Course: B. Sc. Session: Even semester 2023

Subject: CHEMISTRY

Name of the Teacher: Mr. Rituraj Tahu

Methods to be applied: Lecture, practical demonstration, interaction and discussion. Teaching Materials: White Board, Marker Pen, Duster, Book, Journal, Laptop, Projector, Pointer.

Paper Code/Title	Allotted Unit/ Topic	No. of Class required	Detail of the topics to be taught & class required	No. of tutorials
CHEMISTRY- C-201	Unit I: Basic Organic Chemistry	8	• Organic Compounds: Classification and Nomenclature, Hybridization, Shapes of molecules, Influence of hybridization on bond properties [2]	4
			• <i>Electronic effects:</i> Inductive, electromeric, resonance and mesomeric effects, hyperconjugation and their applications; Dipole moment [2]	
			• Homolytic and Heterolytic fission with suitable examples. Curly arrow rules, formal charges; Electrophiles and Nucleophiles; Nucleophlicity and basicity; Types, shape and their relative stability of Carbocations, Carbanions, Free radicals and Carbenes, Nitrenes [2]	
			 Organic acids and bases; their relative strength, Hard and soft acids & bases. Energy profile diagrams of one step, two steps & three steps reactions, Activation energy, Kinetically Controlled & Thermodynamically 	

			Controlled reactions [2]	
	Unit IV: Cycloalkanes and Conformational analysis:	10	 Cycloalkanes: Preparation and their relative stability, Baeyer strain theory Conformation analysis of alkanes (Ethane and Butane): Relative stability: Energy diagrams of cyclohexane: Chair, Boat and Twist boat forms; Relative stability with energy diagrams [10] 	5
	Unit V: Aromatic Hydrocarbons	12	 Aromaticity: Hückel's rule, aromatic character of arenes, cyclic carbocations/carbanions and heterocyclic compounds with suitable examples [5] Electrophilic aromatic substitution: halogenation, nitration, sulphonation and Friedel-Craft's alkylation/acylation with their mechanism [4] Directing effects of the groups [3] 	
CHEMISTRY- C-201-LAB	Organic Chemistry Practical	9	 Purification of organic compounds by crystallization [2] Determination of the melting points [1] Effect of impurities on the melting point – mixed melting point of two unknown organic compounds [1] Separation of a mixture of two amino acids by paper chromatography [1] Separation of a mixture of two sugars by paper chromatography [1] Separation of a mixture of o-and p-nitrophenol or o-and p-aminophenol by thin layer chromatography (TLC) [1] Viva [2] 	2
CHEMISTRY- C-402	Unit I: Nitrogen Containing Functional Groups	16	 Amines: Effect of substituent and solvent on basicity; Preparation and properties: Gabriel phthalimide synthesis, Carbylamine reaction, Mannich reaction, Hoffmann's exhaustive methylation, Hoffmann-elimination reaction; Distinction between 1°, 2° and 3° amines with Hinsberg reagent and nitrous acid [10] Diazonium Salts: Preparation and their synthetic applications. 	2

			Diazomethane & Diazoacetic Ester with synthetic application [6]	
	Unit IV: Alkaloids	6	 Natural occurrence, General structural features, Isolation and their physiological action [2] Hoffmann's exhaustive methylation, Emde's modification, Structure elucidation and synthesis of Hygrine and Nicotine. Medicinal importance of Nicotine, Hygrine, Quinine, Morphine, Cocaine, and Reserpine [4] 	
CHEMISTRY- C-402-LAB	Organic Chemistry Practical	14	 Qualitative analysis of unknown organic compounds 	2
CHEMISTRY- C-602	Unit I: Organic Spectroscopy	15	 UV Spectroscopy: Types of electronic transitions, λmax, Chromophores and Auxochromes, Bathochromic and Hypsochromic shifts, Intensity of absorption; Application of Woodward Rules for calculation of λmax for the following systems: α, β unsaturated aldehydes, ketones, carboxylic acids and esters; Conjugated dienes: alicyclic, homoannular and heteroannular; Extended conjugated systems (aldehydes, ketones and dienes); distinction between cis and trans isomers. IR Spectroscopy: Fundamental and non-fundamental molecular vibrations; IR absorption positions of O, N and S containing functional groups; Effect of H-bonding, conjugation, resonance and ring size on IR absorptions; Fingerprint region and its significance; application in functional group analysis 	2
	Unit IV: Polymers	16	 Introduction and classification of polymers [6] Polymerisation reactions -Addition and condensation -Mechanism of cationic, anionic and free radical addition polymerization; Ziegler-Natta polymerisation of alkenes; Preparation and applications of plastics – thermosetting (phenol-formaldehyde, Polyurethanes) and thermosoftening (PVC, polythene) [10] 	2
CHEMISTRY- C-602-LAB	Chemistry Practical	19	• Qualitative analysis of unknown organic compounds containing monofunctional groups [14]	3

			• Extraction of caffeine from tea leaves [1]	
			• Identification of simple organic compounds by IR spectroscopy and NMR Spectroscopy (Spectra to be provided) [2]	
			• Viva [2]	
CHEMISTRY- DSE-603	Dissertation (Project Work)	30	• Project Work [30]	2
CHEMISTRY- GE-201	Section <i>B:</i> <i>Organic</i> <i>Chemistry</i> Unit VI: Alcohols, Phenols and Ethers (Up to 5 Carbons)	8	• <i>Alcohols</i> : Preparation: Preparation of 10, 20 and 30 alcohols: using Grignard reagent, Ester hydrolysis, Reduction of aldehydes, ketones, carboxylic acid and esters. Reactions: With sodium, HX (Luca's test), esterification, oxidation (with PCC, <i>alk</i> . KMnO4, acidic dichromate, conc. HNO3). Diols: (Up to 6 Carbons) oxidation of diols. Pinacol-Pinacolone rearrangement [2]	2
			 <i>Phenols</i>: (Phenol case): Preparation: Cumene hydroperoxide method, from diazonium salts. Reactions: Electrophilic substitution: Nitration, halogenation and sulphonation. Reimer- Tiemann Reaction, Schotten – Baumann Reaction [2] 	
			• Ethers (aliphatic and aromatic) Cleavage of ethers with HI [2]	
CHEMISTRY	Chamistra	5	• Aldehydes and ketones (aliphatic and aromatic): (Formaldehye, acetaldehyde, acetone and benzaldehyde): Preparation: from acid chlorides and from nitriles. Reactions – Reaction with HCN, ROH, NaHSO3, NH2-G derivatives. Iodoform test. Aldol Condensation, Cannizzaro's Reaction, Wittig Reaction, Benzoin Condensation. Clemensen Reduction and Wolff Kishner Reduction. Meerwein- Pondorff Verley Reduction [2]	2
GE-201-LAB	Practical	5	• <i>Purification</i> of organic compounds by crystallization [2]	Z
			• Determination of melting and boiling points [1]	
			• Preparation by Benzoylation of amines/phenols [1]	
			• Preparation of Oxime and 2, 4- dinitrophenylhydrazone of aldehyde/ketone [1]	
			• Viva [2]	

Signature of the Teachers

DEPARTMENT OF CHEMISTRY

Estd. 1969 Simaluguri, Sivasagar: 785686, Assam, India Email: AON COLLEGE

TEACHING PLAN

Dr. Pakiza Begum Assistant Professor Department of Chemistry Gargaon College Simaluguri: 785686 Assam, India

1. Assigned papers and units

Even semester

Semester		Paper Code	Paper Title	Unit Wise Division		
II	Н	N/A				
GE		N/A				
IV	Η	C-401	Inorganic Chemistry	Unit II: Transition Elements		
				Unit III: Lanthanoids and Actinoids		
				Unit IV: Bioinorganic Chemistry		
		C-401-LAB	Inorganic Chemistry	A. Gravimetric Analysis		
			Practical	B. Inorganic Preparation		
				C. Chromatography of metal ions		
	GE	GE-401	Chemistry	Unit II: Coordination Chemistry		
				Unit III: Crystal Field Theory		
		GE-401-LAB	Chemistry Practical	A. Inorganic Chemistry practical		
VI (I	H)	C-601	Inorganic Chemistry	Unit I: Theoretical Principles in Qualitative Analysis (H ₂ S Scheme)		
				Unit II: Organometallic compounds		
				Unit IV: Catalysis by Organometallic Compounds		
		C-601-LAB	Inorganic Chemistry Practical	A. Qualitative Inorganic Analysis		
		DSE-601	Inorganic Materials	Unit-I: Silicate Industries		
		_ ~ _ ~ ~ ~ ~ ~	of Industrial			
			Importance			
		DSE-601-LAB	Inorganic Materials	A. Any 2 (two) experiment to be set in examination		
			of Industrial	a) Determination of free acidity in ammonium sulphate fertilizer.		
			Importance Practical	b) Determination of composition of dolomite (by complexometric		
				titration).		
				c) Analysis of Cement.		
				d) Preparation of pigment (zinc oxide).		
		DSE-603	Dissertation (Project Work)	A. Laboratory Experiment		

a) Literature Review: 5 marks
b) Objectives: 5 marks
c) Experimental work: 25 marks
d) Results & Discussions: 25 marks
e) Presentation and Viva: 20 marks
f) IA: 20 marks

Odd semester

Seme	ester	Paper Code	Paper Title	Unit Wise Division	
Ι	H C-101 Inorganic Chemistry		Inorganic Chemistry	Unit I: Atomic Structure	
				Unit II: Periodicity of Elements	
				Unit IV: Oxidation-Reduction	
		C-101-LAB	Inorganic Chemistry	(A) Titrimetric Analysis	
			Practical	(B) Acid-Base Titrations	
				(C) Oxidation-Reduction Titrimetry	
	GE	GE-101		Unit I: Atomic Structure	
		GE-101-LAB		Section A: Inorganic Volumetric Analysis	
III	Η	C-301	Inorganic Chemistry	Unit I: General Principles of Metallurgy	
				Unit II: Acids and Bases	
				Unit IV: Noble Gases	
				Unit V: Inorganic Polymers	
C-301-LAB Inorganic Chemistry A. Iodo / Io		Inorganic Chemistry	A. Iodo / Iodimetric Titrations		
Practical B. Inorganic		Practical	B. Inorganic preparations		
	GE	N/A		N/A	

V (H)	DSE-501	Analytical Methods in Chemistry	Unit I: Qualitative and quantitative aspects of analysis Unit II: UV-Visible and IR Spectrometry
	DSE-501- PRACT	Analytical Methods in Chemistry Practical	 A. Any two to be set in exam a. Separate a mixture of Sudan yellow and Sudan Red by TLC technique and identify them on the basis of their Rf values. b. Chromatographic separation of the active ingredients of plants, flowers and juices by TLC c. Determination of dissolved oxygen in water. d. Determination of Biological oxygen demand (BOD).
	DSE-502	Green Chemistry	Unit I: Introduction to Green Chemistry Unit II: Principles of Green Chemistry and Designing a Chemical synthesis (points (i) and (ii))

2. Lesson Plan with Methodology being used adopted

FOR EVEN SEMESTER

4 th SEMESTER (HONOURS)		
Paper	Title Paper: Inorganic Chemistry	
Code/Title	Paper Code: CHEMISTRY-C-401	
Allotted	Allotted Unit: I	
Unit/Topic	Chapter Name: Coordination Chemistry	
	No. of classes: 26	
Marks: 25		
	Details of the topic:	

	IUPAC nomenclature of coordination compounds, isomerism in coordination compounds.		
	Stereochemistry of complexes with 4 and 6 coordination numbers. Chelate effect, polynuclear		
	complexes. Labile and inert complexes.		
	Werner's theory, valance bond theory (inner and outer orbital complexes), electroneutrality		
	principle and back bonding. Crystal field theory, measurement of 10Dq (Δ_0), CFSE in weak a		
	strong fields, pairing energies, factors affecting the magnitude of 10Dq (Δ_0 , Δ_t). Octahedral vs.		
	tetrahedral coordination, tetragonal distortions from octahedral geometry, Jahn-Teller theorem		
	square planar geometry. Qualitative aspect of Ligand field and MO Theory.		
	Allotted Unit: III		
	Chapter Name: Lanthanoids and Actinoids		
	No. of classes: 6		
	Marks: 5		
	Details of the topic:		
	Electronic configuration, oxidation states, colour, spectral and magnetic properties, Lanthanide		
	contraction, separation of lanthanides (ion-exchange method only)		
	Allotted Unit: IV		
	Chapter Name: Bioinorganic Chemistry		
	No. of classes: 10		
	Marks: 10		
	Details of the topic:		
	Metal ion present in biological systems, classification of elements according to their action in		
	biological system. Geo chemical effect on distribution of metals. Sodium/ K-pump, carbon		
	anhydrase and carboxypeptidase. Excess and deficiency of some trace metals. Toxicity of met		
	ions (Hg, Pb, Cd and As), reasons for toxicity, use of chelating agents in medicine. Iron and its		
	application in bio-systems, Haemoglobin, storage and transfer of iron.		
Teaching Tools	Tools • Board and Marker		
	• ICT tools like Projector, online platform like zoom, upload materials in Google Classroom.		
Evaluation	Evaluation • Assignment		

Process	Sessional Examination		
	• Unit Test		
	Google Class Room Quiz		
	Seminar Presentation/Group Discussion/Micro Teaching		
Panar	Panar Title: Inorganic Chemistry Practical		
Code/Title	Paper Code: CHEMISTRY-C-401-I AB		
Allottod			
Allotteu Unit/Tonio	Chapter Name: Gravimetric Analysis		
Unit/Topic	Morkey 11		
	Marks: 11 Details of the tonic:		
	(i) Estimation of nickel(ii) using Dimethylelyoning		
	(i) Estimation of nickel(ii) using Dimetnyigiyoxime		
	(ii) Estimation of copper as CuSCN		
	(iii) Estimation of iron as Fe_2O_3 by precipitating iron as $Fe(OH)_3$		
	Allotted Unit: B		
	Chapter Name: Inorganic preparations		
	Marks: 7		
	Details of the topic:		
	(i) Tetraamminecopper(II) sulphate		
	(ii) Tetraamminecarbonatocobalt(III) ion		
	(iii) Potassium tris(oxalate)ferrate(III)		
	Allotted Unit: B		
	Chapter Name: Chromatography of metal ions		
	Marks: 4		
	Details of the topic:		
	Principles involved in chromatographic separations. Paper chromatographic separation		
	of following metals		
	(i) Ni(II) and Co(II)		
	(ii) Fe(III) and Al(III)		

	Allotted Unit: D			
	Marks: 5			
	Details of the topic: Viva-voce			
Teaching Tools	• Learning through lab experiments			
	• Industry and research institution visits			
Evaluation	• In semester examinations			
Process	• Viva-voce during practical			
	4 th SEMESTER (GENERIC)			
Paper	Paper Title: Section A: Inorganic Chemistry			
Code/Title	Paper Code: CHEMISTRY-GE-401			
Allotted	Allotted Unit: I			
Unit/Topic	Chapter Name: Transition Series Elements (3d series)			
	No. of classes: 12			
Marks: 10				
Details of the topic:				
	General group trends with special reference to electronic configuration, variable valency, colour,			
	magnetic and catalytic properties, ability to form complexes and stability of various oxidation			
	states (Latimer diagrams) for Mn, Fe and Cu.			
	Lanthanoids and actinoids: Electronic configurations, oxidation states, colour, magnetic			
	properties, lanthanide contraction, separation of lanthanides (ion exchange method only).			
	Allotted Unit: III			
	Chapter Name: Crystal Field Theory			
	No. of classes: 10			
Marks: 10				
	Details of the topic:			
	Crystal Field Theory (CFT): Crystal field effect, octahedral symmetry. Crystal field stabilization			
	energy (CFSE), Crystal field effects for weak and strong fields. Tetrahedral symmetry. Factors			
	affecting the magnitude of D. Spectrochemical series. Comparison of CFSE for O_h and T_d			

	complexes, Tetragonal distortion of octahedral geometry.		
	Jahn-Teller distortion, Square planar coordination.		
Teaching Tools	Board and Marker		
	• ICT tools like Projector, online platforms like zoom, upload materials in Google Classroom.		
Evaluation	• Assignment		
Process	Sessional Examination		
	• Unit Test		
	Group Discussion		
Paper	Paper Title: Section A: Inorganic Chemistry Practical		
Code/Title	Paper Code: CHEMISTRY-GE-401-LAB		
Allotted	Allotted Unit: Section A		
Unit/Topic	Chapter Name: Inorganic Chemistry Salt Analysis		
	Marks: 11		
	Details of the topic:		
	Semi-micro qualitative analysis using H2S of mixtures- not more than four ionic species (two		
	anions and two cations and excluding insoluble salts) out of the following:		
	Cations: Pb ²⁺ , Ag ²⁺ , Bi ³⁺ , Cu ²⁺ , Cd ²⁺ , Sn ²⁺ , Fe ³⁺ , Al ³⁺ , Co ²⁺ , Cr ³⁺ , Ni ²⁺ , Mn ²⁺ , Zn ²⁺ , Ba ²⁺ , Sr ²⁺ ,		
	$Ca^{2+}, Mg^{2+}, NH_4^+.$		
	Anions: CO ₃ ²⁻ , NO ²⁻ , NO ³⁻ , SO ₄ ²⁻ , Cl ⁻ , Br ⁻ , I ⁻ , BO ₃ ³⁻ , PO ₄ ³⁻ .		
	Spot tests should be done whenever possible		
Teaching Tools	Learning through lab experiments		
Evaluation	• In semester examinations		
Process	• Viva-voce during practical		
	6 th SEMESTER (HONOURS)		
Paper	Title Paper: Inorganic Chemistry		
Code/Title	Paper Code: CHEMISTRY-C-601		

Allotted	Allotted Unit: I		
Unit/Topic	Chapter Name: Theoretical Principles in Qualitative Analysis (H2S Scheme)		
	No. of classes: 10		
	Marks: 10		
	Details of the topic: Basic principles involved in analysis of cations and anions and solubility products, common ion effect. Principles involved in separation of cations into groups and choice of group		
	reagents. Interfering anions (fluoride, borate, oxalate and phosphate) and need to remove them		
	after Group II.		
	Allotted Unit: II		
	Chapter Name: Organometallic compounds		
	No. of classes: 22		
	Marks: 20		
	Details of the topic:		
	Definition and classification of organometallic compounds on the basis of bond type. Concept		
	of hapticity of organic ligands.		
	Metal carbonyls: 18 electron rule, electron count of mononuclear, polynuclear and substituted		
	metal carbonyls of 3d series. General methods of preparation (direct combination, reductive		
	carbonylation, thermal and photochemical decomposition) of mono and binuclear carbonyls of		
	3d series. Structures of mononuclear and binuclear carbonyls of Cr, Mn, Fe, Co and Ni using		
	VBT. π -acceptor behavior of CO (MO diagram of CO to be discussed), synergic effect and use		
	of IR data to explain extent of back bonding.		
	Zeise's salt: preparation and structure, evidences of synergic effect and comparison of synergic		
	effect with that in carbonyls.		
	Metal Alkyls: Important structural features of methyl lithium (tetramer) and trialkyl aluminium		
	(dimer), concept of multicenter bonding in these compounds. Role of triethylaluminium in		
	polymerization of ethane (Ziegler-Natta Catalyst). Species present in ether solution of Grignard		
	reagent and their structures, Schlenk equilibrium.		
	Ferrocene: Preparation and reactions (acetylation, alkylation, metalation, Mannich		

	condensation). Structure and aromaticity. Comparison of aromaticity and reactivity with that of		
	benzene.		
	Allotted Unit: IV		
	Chapter Name: Catalysis by Organometallic Compounds		
	No. of classes: 10		
	Marks: 10		
	Details of the topic:		
	Study of the following industrial processes and their mechanism		
	(i) Alkene hydrogenation (Wilkinson's Catalyst)		
	(ii) Hydroformylation (Co salts)		
	(iii) Wacker Process		
	(iv) Synthetic Gasoline (Fisher Tropsch reaction)		
	(v) Synthesis gas by metal carbonyl complexes		
Paper	Title Paper: Inorganic Materials of Industrial Importance		
Code/Title	Paper Code: CHEMISTRY-DSE-601		
Allotted	Allotted Unit: I		
Unit/Topic	Chapter Name: Silicate Industries		
	No. of classes: 16		
	Marks: 15		
	Details of the topic:		
	Glass: Glassy state and its properties, classification (silicate and non-silicate glasses).		
Manufacture and processing of glass. Composition and properties of the following			
	glasses: Soda lime glass, lead glass, armored glass, safety glass, borosilicate glass,		
	fluorosilicate, colored glass, photosensitive glass.		
	Ceramics: Important clays and feldspar, ceramic, their types and manufacture. High technology		
	ceramics and their applications, superconducting and semiconducting oxides, fullerenes carbon		
	nanotubes and carbon fiber.		
	<i>Cements</i> : Classification of cement, ingredients and their role, Manufacture of cement and the		
	setting process, quick setting cements.		

Paper	Title Paper: Inorganic Materials of Industrial Importance				
Code/Title	Paper Code: CHEMISTRY-DSE-601				
Teaching Tools	• Board and Marker				
	• ICT tools like Projector, online platforms like zoom, upload materials in Google				
Evaluation	• Assignment				
Process	Sessional Examinat	tion			
	• Unit Test				
	Google ClassRoom	Quiz			
	Seminar Presentation	on/Group Discussion/Mici	o Teaching		
Paper	Title Paper: Dissertation (Project Work)				
Code/Title	Paper Code: CHEMISTRY-DSE-603				
Allotted	Marks: 100				
Unit/Topic	Details of the unit:				
	In this paper students have to carry out project work (Laboratory experiments or				
Comprehensive Review work on a specified topic) either at their respective college			d topic) either at their respective colleges or any		
other R&D laboratory and UGC recognized University under guidance of a			University under guidance of a faculty member.		
	The student may start their project work during the semester break between fifth and sixth				
	semester. The area of work is to be decided by the advisor				
	On completion of the project work students have to submit the work in the form of a				
	dissertation follow	ved by oral presentation in	the presence of faculty member and an external		
	expert	ved by ordi presentation in	The presence of faculty memoer and an external		
	[Mark Distribution	n for evaluation of the Pro	iect Work		
	A. Laboratory Ex	periment			
	Sl. No.	Topic	Marks		
	(i)	Literature Review	5		
	(ii)	Objectives	5		

	(iii)	Experimental work	25
	(iv)	Results & Discussion	25
	(v)	Presentation and Viva	20
	(vi)	IA	20
	B. Comprehensive Review		
	Sl. No. Topic Marks		
	(i)	Objective	5
	(ii)	Review	35
	(iii)	References	10
	(iv)	Future prospects	25
	(v)	Presentation and Viva	20
(vi)		IA	20
	Note: Students are encouraged to carry out laboratory experiment individually (However in		
	case of infrastructural issues a maximum of 4 students can perform experiments together).		
	Comprehensive review must be carried out individually. Students are encouraged to submit		
	Anti Plagiarism certificate for the report/review.		
Paper	Title Paper: Inorganic Chemistry Practical		
Code/Title	Paper Code: CHEMISTRY-C-601-LAB		
Allotted	Allotted Unit: A		
Unit/Topic	Chapter Name: Qualitative Inorganic Analysis		
	Marks: 22		
	Details of the unit:		
	Qualitative analysis of mixtures containing 2 anions and 3 cations. Emphasis should be given to		
	the understanding	of the chemistry of different rea	ctions. The following radicals are suggested:
	$NO_2^-, S^{2-}, SO_3^{2-}, S$	S ₂ O ₃ ²⁻ , CH ₃ COO ⁻ , F ⁻ , Cl ⁻ , Br ⁻ , I ⁻ ,	NO_3^- , BO_3^{3-} , $C_2O_4^{2-}$, PO_4^{3-} , NH_4^+ , K^+ , Pb^{2+} ,
	$Cu^{2+}, Cd^{2+}, Bi^{3+}, S$	Sn^{2+} , Sb^{3+} , Fe^{3+} , Al^{3+} , Cr^{3+} , Zn^{2+} ,	Mn ²⁺ , Co ²⁺ , Ni ²⁺ , Ba ²⁺ , Sr ²⁺ , Ca ²⁺ , Mg ²⁺
	Mixtures should p	referably contain one interfering	anion, or insoluble component e.g.,

	BaSO ₄ , SrSO ₄ , PbSO ₄ , CaF ₂ or Al ₂ O ₃ or combination of anions e.g., CO_3^{2-} and SO_3^{2-} , NO^{2-} and				
	NO ³⁻ , Cl ⁻ and Br ⁻ , Cl ⁻ and I ⁻ , B ⁻ rand I ⁻ , NO ³⁻ and Br ⁻ , NO ³⁻ and I ⁻ .				
	Spot tests should be done whenever possible.				
	Allotted Unit: B				
	Marks: 5				
	Details of the topic: Viva-voce				
Paper	Title Paper: Inorganic Materials of Industrial Importance Practical				
Code/Title	Paper Code: CHEMISTRY-DSE-601-LAB				
Allotted	Allotted Unit: A				
Unit/Topic	Marks: 22				
	Details of the unit:				
	(i) Determination of free acidity in ammonium sulfate fertilizer.				
	(ii) Estimation of Calcium in Calcium ammonium nitrate fertilizer.				
	(iii)Estimation of phosphoric acid in superphosphate fertilizer.				
	(iv)Electroless metallic coatings on ceramic and plastic material.				
	(v) Determination of composition of dolomite (by complexometric titration).				
	(vi)Analysis of (Cu, Ni); (Cu, Zn) in alloy or synthetic samples.				
	(vii) Analysis of Cement.				
	(viii) Preparation of pigment (zinc oxide).				
	Allotted Unit: B				
	Marks: 5				
	Details of the topic: Viva-voce				
Teaching Tools	• Learning through laboratory experiments				
	Industry and research institution visits				
Evaluation Process	• In semester examinations				
1100055	• Viva-voce during practical				

FOR ODD SEMESTER

	1 st SEMESTER (HONOURS)				
Paper	Paper Title: Inorganic Chemistry				
Code/Title	Code: CHEMISTRY-C-101				
Allotted	Allotted Unit: I				
Unit/Topic	Chapter Name: Atomic Structure				
	No. of classes: 14				
	Marks: 13				
	Details of the topic:				
	Wave mechanics: de Broglie equation, Heisenberg's Uncertainty Principle and its significance,				
	Schrödinger's wave equation, significance of ψ and ψ^2 . Quantum numbers and their significance.				
	Normalized and orthogonal wave functions. Sign of wave functions. Radial and angular wave				
	functions for hydrogen atom. Radial and angular distribution curves. Shapes of s, p, d and f- orbitals.				
	Contour boundary and probability diagrams.				
	Pauli's Exclusion Principle, Hund's rule of maximum multiplicity, Aufbau's principle and its				
	limitations. Variation of orbital energy with atomic number.				
	Allotted Unit: II				
	Chapter Name: Periodicity of Elements				
	No. of classes: 16				
	Marks: 15				
	Details of the topic:				
	Detailed discussion of the following properties of the elements, with reference to s and p-block.				
	(a) Effective nuclear charge, shielding or screening effect, Slater rules, variation of effective nuclear				
	charge in periodic table.				
	(b) Atomic radii (van der Waals)				
	(c) Ionic and crystal radii.				
	(d) Covalent radii (octahedral and tetrahedral)				

	(e) Ionization enthalpy, Successive ionization enthalpies and factors affecting ionization energy. Applications of ionization enthalpy.				
	(f) Electron gain enthalpy, trends of electron gain enthalpy.				
	(g) Electronegativity, Pauling's/ Mulliken's/ Allred Rachow's/ and Mulliken-Jaffé's electronegativity				
	scales. Variation of electronegativity with bond order, partial charge, hybridization, group				
	electronegativity.				
	Allotted Unit: IV				
	Chapter Name: Oxidation-Reduction				
	No. of classes: 4				
	Marks: 4				
	Details of the topic:				
	Redox equations, Standard Electrode Potential and its application to inorganic reactions. Principles				
	involved in volumetric analysis to be carried out in class.				
Teaching Tools	Board and Marker				
	• ICT tools like Projector, online platforms like zoom, upload materials in Google				
	Classroom.				
Evaluation	• Assignment				
Process	Sessional Examination				
	• Unit Test				
	Google ClassRoom Quiz				
	Seminar Presentation/Group Discussion/Micro Teaching				
Paper	Paper Title: Inorganic Chemistry Practical				
Code/Title	Paper Code: CHEMISTRY-C-101-LAB				
Allotted	Allotted Unit: A				
Unit/Topic	Chapter Name: Titrimetric Analysis				
	Marks: 5				
	Details of the topic:				

	(i) Calibration and use of apparatus				
	(ii) Preparation of solutions of different Molarity/Normality of titrants				
	Allotted Unit: B				
	Chapter Name: Acid-Base Titrations				
	Marks: 6				
	Details of the topic:				
	(i) Estimation of carbonate and hydroxide present together in mixture.				
	(ii) Estimation of carbonate and bicarbonate present together in a mixture				
	Allotted Unit: C				
	Chapter Name: Oxidation-Reduction Titrimetry				
	Marks: 11				
	Details of the topic:				
	(i) Estimation of Fe (II) or oxalic acid using standardized KMnO ₄ solution.				
	(ii) Estimation of Fe (II) with K ₂ Cr ₂ O ₇ using diphenylamine as internal indicator				
	Allotted Unit: D				
	Chapter Name: Viva-voce				
	Marks: 5				
Teaching Tools	• Learning through lab experiments				
	• Industry and research institution visits				
Evaluation	• In semester examinations				
Process	• Viva-voce during practical				
1 st SEMESTER (GENERIC)					
Paper	Paper Title: Section A: Inorganic Chemistry				
Code/Title	Paper Code: CHEMISTRY-GE-101				
Allotted	Allotted Unit: I				
Unit/Topic	Chapter Name: Atomic Structure				
	No. of classes: 14				

	Marks: 13				
	Details of the topic:				
	Review of: Bohr's theory and its limitations, dual behavior of matter and radiation, de-Broglie's				
	relation, Heisenberg Uncertainty principle. Hydrogen atom spectra. Need of a new approach to atomic structure.				
	What is Quantum mechanics? Time independent Schrodinger equation and meaning of various				
	terms in it. Significance of ψ and ψ^2 , Schrödinger equation for hydrogen atom. Radial and angular				
	and 3d orbitals (only graphical representation). Radial and angular nodes and their significance				
	Radial distribution functions and the concept of the most probable distance with special reference to 1s and 2s atomic orbitals. Significance of quantum numbers, orbital angular momentum and quantum numbers ml and m _s . Shapes of s, p and d atomic orbitals, nodal planes. Discovery of spin, spin quantum number (s) and magnetic spin				
	quantum number (m _s).				
	Rules for filling electrons in various orbitals, electronic configurations of the atoms. Stability of half-filled and completely filled orbitals, concept of exchange energy. Relative energies of atomic orbitals, Anomalous electronic configurations.				
Teaching Tools	• Board and Marker				
	• ICT tools like Projector, online platforms like zoom, upload materials in Google Classroom.				
Evaluation Brocoss	• Assignment				
1100055	Sessional Examination				
	• Unit Test				
	Google ClassRoom Quiz				
	Group Discussion				
Paper	Paper Title: Section A: Inorganic Chemistry Practical				
Code/Title	Paper Code: CHEMISTRY-GE-101-LAB				

Allotted	Allotted Unit: Section A				
Unit/Topic	Chapter Name: Inorganic Volumetric Analysis				
	Marks: 11				
	Details of the topic:				
	(i) Estimation of Fe (II) ions by titrating it with $K_2Cr_2O_7$ using an internal indicator.				
	(ii) Estimation of oxalic acid by titrating it with KMnO ₄ .				
	(iii) Estimation of water of crystallization in Mohr's salt by titrating with KMnO ₄ .				
	(iv) Estimation of Fe (II) ions by titrating it with KMnO ₄ .				
	(v) Estimation of Cu (II) ions iodometrically using $Na_2S_2O_3$.				
	Allotted Unit: C				
	Marks: 5				
	Details of the topic: Viva-voce				
Teaching Tools	Learning through lab experiments				
Evaluation	• In semester examinations				
Process	Viva-voce during practical				
	3 rd SEMESTER (HONOURS)				
Paper	Title Paper: Inorganic Chemistry				
Code/Title	Paper Code: CHEMISTRY-C-101				
Allotted	Allotted Unit: I				
Unit/Topic	Chapter Name: General Principles of Metallurgy				
	No. of classes: 6				
	Marks: 5				
	Details of the topic:				
	Chief modes of occurrence of metals based on standard electrode potentials. Ellingham diagrams				
	for reduction of metal oxides using carbon and carbon monoxide as reducing agent. Electrolytic				
	Reduction, Hydrometallurgy. Methods of purification of metals: Electrolytic Kroll process, Parting				
	process, van Arkel-de Boer process and Mond's process, Zone refining.				

	Allotted Unit: II			
	Chapter Name: Acids and Bases			
	No. of classes: 8			
	Marks: 7			
	Details of the topic:			
	Brönsted-Lowry concept of acid-base reactions, solvated proton, relative strength of acids, types			
	of acid-base reactions, levelling solvents, Lewis acid-base concept, Classification of Lewis acids,			
	Hard and Soft Acids and Bases (HSAB) Application of HSAB principle.			
	Allotted Unit: III			
	Chapter Name: Noble Gases			
	No. of classes: 8			
	Marks: 7			
	Details of the topic:			
	Occurrence and uses, rationalization of inertness of noble gases, Clathrates; preparation and			
	properties of XeF ₂ , XeF ₄ and XeF ₆ ; Nature of bonding in noble gas compounds (Valence bond			
	treatment and MO treatment for XeF ₂). Molecular shapes of noble gas compounds (VSEPR theory).			
	Allotted Unit: IV			
	Chapter Name: Acids and Bases			
	No. of classes: 8			
	Marks: 7			
	Details of the topic:			
	Types of inorganic polymers, comparison with organic polymers, synthesis, structural aspects and			
	applications of silicones and siloxanes. Borazines, silicates and phosphazenes, and polysulphates.			
Teaching Tools	Board and Marker			
	• ICT tools like Projector, online platforms like zoom, upload materials in Google Classroom.			
Evaluation Brocoss	• Assignment			
rrucess	Sessional Examination			

	• Unit Test					
	Google ClassRoom Quiz					
	Seminar Presentation/Group Discussion/Micro Teaching					
Paper	Paper Title: Inorganic Chemistry Practical					
Code/Title	Paper Code: CHEMISTRY-C-301-LAB					
Allotted	Allotted Unit: A					
Unit/Topic	Chapter Name: Iodo/Iodimetric Titrations					
	Marks: 13					
	Details of the topic:					
	(vi) Estimation of Cu (II) and K ₂ Cr ₂ O ₇ using sodium thiosulphate solution (Iodimetrically)					
	(vii) Estimation of available chlorine in bleaching powder iodometrically					
	Allotted Unit: B					
	Chapter Name: Inorganic preparations					
	Marks: 9					
	Details of the topic:					
	(iv) Cuprous Chloride, Cu ₂ Cl ₂					
	(v) Preparation of Manganese (III) phosphate, MnPO ₄ .H ₂ O					
	(vi) Preparation of Aluminium potassium sulphate KAl(SO ₄) ₂ .12H ₂ O (Potash alum) or Chrome					
	alum.					
	Allotted Unit: C					
	Marks: 5					
	Details of the topic: Viva-voce					
Teaching Tools	• Learning through lab experiments					
	• Industry and research institution visits					
Evaluation Process	• In semester examinations					
1100035	• Viva-voce during practical					
	3 rd semester (Generic)					

Paper	NA			
Code/Title				
	5 th SEMESTER (HONOURS)			
Paper	Title Paper: Analytical Methods in Chemistry			
Code/Title	Paper Code: CHEMISTRY-DSE-501			
Allotted	Allotted Unit: I			
Unit/Topic	Chapter Name: Qualitative and quantitative aspects of analysis			
	No. of classes: 5			
	Marks: 4			
	Details of the topic:			
	Sampling, evaluation of analytical data, errors, accuracy and precision, methods of their expression,			
	normal law of distribution if indeterminate errors, statistical test of data; F, Q and t test, rejection of			
	data, and confidence intervals.			
	Allotted Unit: II			
	Chapter Name: UV-Visible and IR Spectrometry			
	No. of classes: 25			
	Marks: 25			
	Details of the topic:			
	Origin of spectra, interaction of radiation with matter, fundamental laws of spectroscopy and			
	selection rules, validity of Beer-Lambert's law.			
	UV-Visible Spectrometry: Basic principles of instrumentation (choice of source, monochromator			
	and detector) for single and double beam instrument; Basic principles of quantitative analysis: estimation of metal ions from aqueous solution, geometrical isomers, keto-enol tautomers. Determination of composition of metal complexes using Job's method of continuous variation			
	and mole ratio method.			
	Infrared Spectrometry: Basic principles of instrumentation (choice of source, monochromator &			
	detector) for single and double beam instrument; sampling techniques.			
	Structural illustration through interpretation of data, effect and importance of isotope			
	substitution.			

	Flame Atomic Absorption and Emission Spectrometry: Basic principles of instrumentation				
	(choice of source, monochromator, detector, choice of flame and Burner designs. Techniques of				
	atomization and sample introduction; Method of background correction, sources of chemical				
	interferences and their method of removal. Techniques for the quantitative estimation of trace				
	level of metal ions from water samples.				
Paper	Title Paper: Analytical Methods in Chemistry				
Code/Title	Paper Code: CHEMISTRY-DSE-501				
Allotted	Allotted Unit: I				
Unit/Topic	Chapter Name: Introduction to Green Chemistry				
	No. of classes: 4				
	Marks: 4				
	Details of the topic:				
	What is Green Chemistry? Need for Green Chemistry. Goals of Green Chemistry.				
	Limitations? Obstacles in the persuit of the goals of Green Chemistry.				
	Allotted Unit: I				
	Chapter Name: Introduction to Green Chemistry (only a part)				
	No. of classes: 4				
	Marks: 4				
	Details of the topic:				
	Twelve principles of Green Chemistry with their explanations and examples and special emphasis				
	on the following				
	(i) Designing a Green Synthesis using these principles; Prevention of Waste/ byproducts;				
	maximum incorporation of the materials used in the process into the final products, Atom				
	Economy, Calculation of atom economy of the rearrangement, addition, substitution and				
	elimination reactions.				
	(ii) Prevention/ minimization of hazardous/ toxic products reducing toxicity				
Teaching Tools	Board and Marker				
	• ICT tools like Projector, online platform like zoom, upload materials in Google Classroom.				

Evaluation	Assignment				
Process	Sessional Examination				
	• Unit Test				
	• Unit Test				
	Google Class Room Quiz				
	Seminar Presentation/Group Discussion/Micro Teaching				
Paper	Title Paper: Analytical Methods in Chemistry Practical				
Code/Title	Paper Code: CHEMISTRY-DSE-501-PRACT.				
Allotted	Allotted Unit: A				
Unit/Topic	Chapter Name: Analytical Chemistry Practical				
	Marks: 22				
	Details of the topic:				
	(i) Paper chromatographic separation of Fe^{3+} , Al^{3+} , Cr^{3+} , Ag^+ , Hg_2^{2+} , and Pb^{2+}				
	(ii) Separation and identification of the monosaccharides present in the given mixture (glucose				
& fructose) by paper chromatography. Reporting the Rf values.					
	(iii) Separate a mixture of Sudan yellow and Sudan Red by TLC technique and identify them on				
	the basis of their Rf values.				
	(iv) Chromatographic separation of the active ingredients of plants, flowers and juices by TLC				
	(v) Determine the pH of the given aerated drinks fruit juices, shampoos and soaps.				
	(vi) Determination of Na, Ca, Li in cola drinks and fruit juices using flame photometric				
	techniques.				
	(vii) Analysis of soil: determination of pH of soil, total soluble salt, estimation of calcium,				
	magnesium, phosphate, nitrate				
	(viii) Separation of metal ions from their binary mixture.				
	(ix) Separation of amino acids from organic acids by ion exchange chromatography.				
	(x) Determination of dissolved oxygen in water.				
	(xi) Determination of chemical oxygen demand (COD).				
	(xii) Determination of Biological oxygen demand (BOD).				

	Allotted Unit: B		
	Marks: 5		
	Details of the topic: Viva-voce		
Teaching Tools	• Learning through lab experiments		
	• Industry and research institution visits		
Evaluation	• In semester examinations		
Process	Viva-voce during practical		

Jaking a SIGNATURE

I. GENERAL INFORMATION

NAME OF THE TEACHER: Dr. Saheen Shehnaz Begum

DEPARTMENT: Chemistry

DESIGNATION: Assistant Professor

OBJECTIVES OF THE TEACHING PLAN:

- > To develop a strong knowledge on chemical thermodynamics, their mathematical expression & application.
- > To develop the basic knowledge on electrochemistry, various laws governing electro chemical process and their application.
- To provide a broad foundation in chemistry that stresses scientific reasoning and analytical problem solving with a molecular perspective

II. ASSIGNED PAPERS AND UNIT

SEMESTER	PAPER CODE	PAPER TITLE	UNITS
II H	C-202	Chemical Thermodynamics and its	Unit 2: Systems of Variable composition
		Applications	Unit 3: Chemical Equilibrium
			Unit 4: Solutions and Colligative
			properties
II H Lab	C-202-LAB	Physical Chemistry	Thermochemistry
II GE	CHEMISTRY-GE-201	Chemical Energetics, Equilibria and	Unit 1: Chemical energetics
		Functional Organic Chemistry	Unit 2: Chemical equilibrium
II GE Lab	CHEMISTRY-GE-201-LAB	Physical Chemistry and Organic	Thermochemistry and Ionic equilibria
		Chemistry	
IV H	C-403	Electrochemistry	Unit 2: Electrochemistry

			Unit 3: Electrical and Magnetic	
			Properties of Atoms and Molecules	
IV H Lab	C-403-LAB	Physical Chemistry	A. Conductometry	
			B. Potentiometry	
IV GE	CHEMISTRY-GE-401	Transition metals, Coordination	Unit 4: Kinetic Theory of Gases	
		Chemistry, States of Matter and Chemical	Unit 6: Solids	
		Kinetics		
IV GE Lab	CHEMISTRY-GE-401 -	Inorganic Chemistry and Physical	Surface Tension and Viscosity	
	LAB	Chemistry		
VI	DSE-601	Inorganic Materials of Industrial	Unit 4: Batteries	
		Importance		
	DSE-603	Dissertation	Dissertation (Project Work)	
	DSE-601- Lab	Inorganic Materials of Industrial		
		Importance		
	III. PAPER WISE/UNIT WISE LESSON PLAN			

PAPER CODE: C-202 and C-202-LAB

TITLE OF THE PAPER: Chemical Thermodynamics and its Applications and Associated Practical

Unit 2: Systems of Variable composition

CLASSES	TOPIC	OBJECTIVES	OUTCOME
1	Partial molar quantities	To build foundational concept	The application of mathematical tools to calculate thermodynamic properties.

2	Dependence of thermodynamic	Introduce dependence of	To make the students comprehend
	parameters on composition	thermodynamic parameters on	thermodynamic parameters
		composition	
3	Chemical potential	Introduce and understand Chemical	To teach about chemical potential
		Potential	
4	Mixtures and chemical potential of	Concept of ideal mixtures and	Students will be able to grasp the concept of
	ideal mixtures	variation of chemical potential	ideal mixtures and variation using chemical
			potential
5	Change in thermodynamic functions in	Relation between ΔG_{mix} , ΔS_{mix} ,	To teach the thermodynamic relation between
	mixing of ideal gases	ΔH_{mix} with μ	thermodynamic functions in mixing ideal gas
6	Gibbs-Duhem equation	Importance of μ and dn	Numericals and proper understanding of
7.	Numerical based on all topics and		relation between Gibbs-Duhem equation.
	general discussion		
8.	Doubt clearing session		

Unit 3: Chemical Equilibrium

CLASSES	TOPIC	OBJECTIVES	OUTCOME
1	Concept and Criteria and types of	To build foundational concept	Students would be able to identify the given
	thermodynamic equilibrium	in equilibria by demonstrating	equilibria and their types.
		types of equilibria	
2	Degree of advancement of reaction and	To teach ξ - extent of reaction	To inculcate the concept of advancement of
	chemical equilibria in ideal gases	or degree of advancement and	reaction
		its application	
3	Thermodynamic derivation of relation	Introduce Q and how it is	То
	between G of reaction and Q, reaction	different from K _{eq} and its	
	quotient.	relation with G	

4	Fugacity	To teach concept of fugacity	Students will be able to grasp the concept of ideal mixtures and variation using chemical potential
5	Exoergic and endoergic reactions and their	To teach about exoergic and	To teach the thermodynamic relation between
	coupling	endoergic reactions	thermodynamic functions in mixing ideal gas
6	Equilibrium constants, K _{eq} and their	Derive the dependence of K _{eq}	Students will be able to relate K _{eq} with T, P
	quantitative dependence on T, P and C	with T, P and C	and C
7.	Thermodynamic derivation of relations	Introduce types of	Students will be able to distinguish Kp, Kc
	between equilibrium constants <i>Kp</i> , <i>Kc</i> and <i>K</i>	equilibrium constant and their	and K
		derivation	
8.	Le Chatelier principle (quantitative	Application of Le Chatelier	Students will be able to apply Le Chatelier
	treatment)	principle to different types of	principle
		systems	
9.	Equilibrium between ideal gases and a pure	Conditions for equilibria	Learn about equilibria of ideal gas and pure
	condensed phase.	between ideal gas and pure	condensed phase
	-	condensed phase	-
10.	Numericals and General Discussion	Problem solving capability	To adapt them to numerical aptitude
		enhancement	

Unit 4: Solutions and Colligative properties

CLASSES	TOPIC	OBJECTIVES	OUTCOME
1	Solutions – components and types; Dilute	To build foundational concept of	Students would be able to identify the given
	solutions	solutions mostly focused on dilute	equilibria and their types.
		solutions	
2	Raoult's and Henry's Laws and their	To rediscuss Raoult's and Henry's	To inculcate the concept of advancement of
	applications and Raoult's and Henry's	Laws and solve problems based	reaction
	Laws and their applications	on it.	

3	Lowering of vapour pressure	To define vapour pressure	To ascertain that student, grasp the concept
			of vapour pressure
4	Colligative property	Definition and Application	Students can define and identify colligative
			properties
5	Thermodynamic derivation using chemical	To carry out derivation of	To make the students more adaptable to
	potential to derive relations between four	relations between four colligative	thermodynamic derivations
	colligative properties	properties and chemical properties	
6	Relative lowering of vapour pressure	Each property has to been	Students would be able to solve both
7	Elevation of boiling point	explained in each class and	numerical and application-based question of
8.	Depression of freezing point	associated problem solving	each colligative property
9.	Osmotic pressure and amount of solute		
10.	Normal, dissociated and associated solutes	Dissociation and association of	Applications in calculating molar masses in
	in solution	solute affecting the solution	calculating Normal, dissociated and
11.	Applications in calculating molar masses	Calculation of molar mass	associated solutes in solution
		considering association and	
		dissociation	
12.	Numericals and general discussion	Problem solving capability	Adaptability in question solving
		enhancement	

PAPER CODE: C-202 Lab

TITLE OF THE PAPER: Physical Chemistry Laboratory

UNIT: Practical

EXPECTED DATE OF COMPLETION OF THE UNIT: 10th April, 2022

CLASSES

TOPIC

OBJECTIVES

OUTCOME

1	Determination of heat capacity of the	enthalpy of neutralization	Practical idea on enthalpy of neutralization
	calorimeter and enthalpy of neutralization of		
	hydrochloric acid with sodium hydroxide.		
2	Calculation of the enthalpy of ionization of	enthalpy of ionization	Practical idea on enthalpy of ionization
	ethanoic acid.		
3	Study of the solubility of benzoic acid in water	solubility	solubility of benzoic acid
	and determination of Δ H.		

PAPER CODE: CHEMISTRY-GE-201

TITLE OF THE PAPER: Chemical Energetics, Equilibria and Functional Organic Chemistry

UNIT: 1: Chemical Energetics

CLASSES	TOPIC	OBJECTIVES	OUTCOME
1	Review of thermodynamics	To build foundational concept	The application of mathematical tools to
2	Review of Laws of Thermodynamics.	of thermodynamics	calculate thermodynamic properties.
3	Principles and definitions of	Basis of properties like	To make the students comprehend
	thermochemistry.	Extensive, intensive, state	thermodynamic properties
		function, path function	
4	Concept of standard state and	Introduce the idea of standard	Definition and properties of standard state
		state	
5	Concept standard enthalpies of formations	Introduction to Gibbs free	To make students understand the basis of
		energy, enthalpy, entropy	change in enthalpies in chemical system
6	Integral enthalpies of solution and dilution	Concept of integral enthalpies	Students will be able to grasp the concept
		and its change with dilution.	integral enthalpies and Differential enthalpies
7	Differential enthalpies of solution and	Concept of differential	and its change with dilution.
	dilution	enthalpies and its change with	
		dilution.	

8	Calculation of bond energy from	To teach the students about the	Students would be able to calculate values of
	thermochemical data.	analysis of thermochemical	BE, BDE and RE from thermochemical data
9	Calculation of bond dissociation energy	data and its calculation for	
	from thermochemical data.	determination of bond energy,	
10	Calculation of resonance energy from	bond dissociation energy and	
	thermochemical data.	resonance energy	
11	Kirchhoff's equation – derivation and	Variation of enthalpy of a	Students would be taught to solve numerical
	application	reaction with temperature	so that they can identify and apply
	Numerical based on all topics		Kirchhoff's equation

UNIT: 1: Chemical Equilibrium

CLASSES	TOPIC	OBJECTIVES	OUTCOME
1	Free energy change in a chemical reaction	To build foundational concept of	Students would be able to understand free
		chemical reaction and free	energy change in chemical reaction and make
		energy change	derivation. They would also be able to
2	Thermodynamic derivation of the law of	Law of chemical equilibrium	distinguish between ΔG and ΔG^o
	chemical equilibrium.	and its derivation	
3	Distinction between ΔG and ΔG^o	Elaborate distinction of change	
		is Gibbs free energy and change	
		in standard Gibbs free energy.	
4	Le Chatelier's principle	To be able to predict the effect	Students would be able to determine if a
		of a change in conditions on	dynamic equilibrium shifts to a particular
		chemical equilibria.	direction by changing the conditions.
5	Ideal gases	Introduction to ideal gas;	To make students understand the basis how
		assumptions of ideal gas.	ideal gas molecules interact.

6	Relationships between Kp, Kc and Kx for	Equilibrium constant based on	Students would be able to solve questions
	reactions involving ideal gases.	partial pressure, concentration	based on <i>Kp</i> , <i>Kc</i> and <i>Kx</i> for reactions
		and mole fraction	involving ideal gases
7	Differential enthalpies of solution and	Concept of differential	
	dilution	enthalpies and its change with	
		dilution.	

PAPER CODE: GE-201 Lab

TITLE OF THE PAPER: Chemistry Practical

UNIT: Section A: Physical Chemistry

CLASSES	TOPIC	OBJECTIVES	OUTCOME
1	Determination of heat capacity of the calorimeter and enthalpy of neutralization of hydrochloric acid with sodium hydroxide.	enthalpy of neutralization	Practical idea on enthalpy of neutralization
2	Calculation of the enthalpy of ionization of ethanoic acid.	enthalpy of ionization	Practical idea on enthalpy of ionization
3	Study of the solubility of benzoic acid in water	solubility	solubility of benzoic acid

PAPER CODE: IV H

TITLE OF THE PAPER: Physical Chemistry

UNIT: **II: Electrochemistry**

CLASSES	TOPIC	OBJECTIVES	OUTCOME
1	Quantitative aspects of Faraday's laws of electrolysis	Revision of previously known concept so as to build foundational concept of electrolysis	To check the foundation on which further concept can be built.
2	Rules of oxidation/reduction of ions based on half-cell potentials	Rules of redox reactions and half cell potentials	To teach about the half-cell potentials and oxidation-reduction rules
3	Applications of electrolysis in metallurgy and industry	To introduce the applicability of elctrolysis	Electrolysis as part of industrial application.
4	Chemical cells, reversible and irreversible cells with examples	Concept and exemplification of types of cells	Students can identify different types of cells
5	Electromotive force of a cell and its measurement	Definition of EMF of a cell and how to measure it	Students can calculate EMF of a cell
6	Standard electrode (reduction) potential	Explanation of Standard reduction potential	Students learn about what is SE and its applications in different types of half-cells.
7.	SE and its application to different kinds of half-cells	To teach about the various applications of SE in different types of cells	
8.	Nernst equation and its application	To teach the concept and derivation of Nernst equation and its application	Students know and can solve problems based on Nernst equation
9.	Application of EMF measurements in determining free energy	Free energy relation with EMF	Students can derive application of EMF for determining free energy
10.	Application of EMF measurements in determining enthalpy and entropy of a cell reaction	Relation of EMF with enthalpy and entropy of a cell reaction	Students know the relation between enthalpy and cell reaction with EMF and their applications.

11.	Application of EMF measurements in	Relation between EMF and K and	Students can derive the relation between K or
	determining equilibrium constants	Q of cell reaction	Q with EMF
12.	Application of EMF measurements in	Relation between EMF and pH	Students can determine the relation between
	determining pH values using hydrogen	values using H-electrode	pH of H-electrode and EMF
	electrodes		
13.	Application of EMF measurements in	Relation between EMF and pH	Students can determine EMF and pH of
	determining pH values using quinone-	values using H-electrode	hydroquinone electrode
	hydroquinone electrodes		
14.	Application of EMF measurements in	Relation between EMF and pH	Students can determine EMF and pH of glass
	determining pH values using glass	values using glass electrode	electrode
	electrodes		
15.	Application of EMF measurements in	Relation between EMF and pH	Students can determine EMF and pH using
	determining pH values using SbO/Sb ₂ O ₃	values using using SbO/Sb ₂ O ₃	SbO/Sb ₂ O ₃ electrodes
	electrodes	electrodes	
16.	Concentration cells and types	Foundation class on concentration	Students can define concentration cells and
		cells and their types	differentiate between the types
17.	Concentration cells with and without	Concept of concentration cells	Students can diagrammatically represent the
	transference	with transference and without	conc cells with transference and without
		transference	transference
18.	Liquid junction potential	Foundational class to build the	Concept built on LJP
		concept and role of LJP	
19.	Determination of activity coefficients	Role and method of determination	Students can calculate the value of activity
		of activity coefficients	coefficients
20.	Transference numbers and its	Foundational concept on	Students can grasp the concept of
	determination	transference number and their	transference numbers and realize the method
		determination	of its determination
21.	Potentiometric titrations	Elaboration on the technique and	Students can correlate theory with
		use of potentiometric titrations	experiments on potentiometric titrations

22.	Potentiometric titrations: acid-base,	Qualitative discussion of different	Students can differentiate and define different
	Redox reaction, Precipitation reaction	types of potentiometric titrations	types of potentiometric titrations
		such as complete discussion on	
		acid-base, redox and precipitation	
		reaction	
23.	Numerical on different aspects of	Class focused on numericals	Students are encouraged to solve different
	Electrochemistry		types of numericals from easy to tough of this
			chapter
24.	General Doubt clearing session	All doubts clearing session	Adaptability in question solving

PAPER CODE: C-403

TITLE OF THE PAPER: Physical Chemistry Practical

UNIT: Practical

CLASSES	TOPIC	OBJECTIVES	OUTCOME
1	Determination of cell constant	Use of conductivity bridge	Practical idea on cell constant
2	conductometric titration: Strong acid vs. strong base	conductometric titration	Practical idea on conductometric titration
3	conductometric titrations: Weak acid vs. strong base	conductometric titration	Practical idea on conductometric titration
4	potentiometric titrations: Strong acid vs. strong base ii	potentiometric titrations	Practical idea on potentiometric titration

PAPER CODE: GE-401

TITLE OF THE PAPER: Transition metals, Coordination Chemistry, States of Matter and Chemical Kinetics

UNIT: IV Kinetic Theory of Gases

CLASSES	TOPIC	OBJECTIVES	OUTCOME
1	Kinetic Theory of Gases: Postulates of	Foundational topic elaborated	Students learn about the theory that
	Kinetic Theory of Gases	into the postulates	determines the kinetics of gases
2	Derivation of the kinetic gas equation	To mathematically formulate the	Derivation is taught to the students
		kinetic gas equation	
3	Deviation of real gases from ideal	Causes of deviation from ideal	Students can correlate the causes and know
	behaviour and causes of deviation	behaviour is explained	why the real gases deviate from ideal gases
4	Compressibility factor.	To teach about the	Students know about the ratio of PV for
		compressibility factor	ideal and real gas
5	van der Waals equation of state for real	Relevance and form of van der	Students know about the mathematical form
	gases	Waals equation for real gases	of van der Waals equation
6	Boyle temperature	To teach Boyle temperature	Students learn about Boyle temperature
7	Critical phenomena, critical constants and	To teach critical phenomena	Students learn
	their calculation from van der Waals		
	equation		
8	Andrews isotherms of CO ₂	To teach Andrews isotherm	Students can draw the Andrews isotherm of
		diagrammatically	CO_2
9	Maxwell Boltzmann distribution laws of	Distribution of molecular	Students can draw the relation
	molecular velocities and molecular energies	velocities and energies is	mathematically
		explained by Maxwell-	
		Boltzmann distribution	

10	Temperature dependence of these	Temperature dependence is	Students can figure out most probable
	distributions	taught so as to explain the role	velocity from the temperature dependence
		of temperature can be explained.	curves
		Shown diagrammatically.	
11	Most probable, average and root mean	Difference between the types of	Students can define and differentiate
	square velocities	velocities and their mathematical	between the types of velocities.
		forms	
12	Collision number and mean free path of	To teach about the parameters of	Students learn about the collision parameters
	molecules	collision of gas molecules	
13	Viscosity of gases, effect of	Relation between viscosity of	Students learn about the viscosity of gases
	temperature/pressure on coefficient of	gases and T and P on coeff of	and coeff of viscosity relation to T and P
	viscosity	viscosity	

UNIT: VI Solids

CLASSES	TOPIC	OBJECTIVES	OUTCOME
1	Solids and Forms of solids.	To build the foundation on states	Students know what solids are and how they
		of matter and particularly solids	are different from gas and liquid.
2	Symmetry elements	Introduction to symmetry	Plane of symmetry, point of symmetry,
		elements	identity elements are learnt
3	Unit cells and crystal systems	Concept of Unit cell and crystal	Students learn about the unit cell and how
		systems	these are drawn.
4	Bravais lattice types	Types of Bravais lattice	Students learn about Bravais lattice
5	identification of lattice planes	Taught how to identify the	Students learn about lattice plane
		lattice planes	identification
6	Laws of Crystallography - Law of	Laws are explained and taught	Students learn about laws governing solids
	constancy of interfacial angles, Law of		
	rational indices		

7	Miller indices	Class on Miller indices for solids	Students learn about miller indices
8	Bragg's law	Class on Bragg's law	Students learn about Law X-ray diffraction
9	Structures of NaCl (qualitative treatment	Qualitative treatment of	Students learn about structure of NaCl
	only)	structure of NaCl	
10	Defects in crystals	Crystal defects and reasons and	Students learn about crystal defects and its
		implications taught	implications
11	Glasses and liquid crystals	Taught glasses and liquid	Students learn about glasses and liquid
		crystals	crystals

PAPER CODE: GE-401 Lab

TITLE OF THE PAPER: Section B: Physical Chemistry Practical

UNIT: Practical

EXPECTED DATE OF COMPLETION OF THE UNIT: 10th April, 2022

CLASSES	TOPIC	OBJECTIVES	OUTCOME
1	Determination of the surface tension of a	Determination of the surface	Knowledge how to prepare solutions use of
	liquid or a dilute solution using a	tension	stalagmometer
	stalagmometer		
2	Determination of the relative and absolute	Determination of viscosity of	Knowledge how to prepare solutions use of
	viscosity of a liquid or dilute solution using	liquid	viscometer
	an Ostwald's viscometer		

PAPER CODE: DSE-601

TITLE OF THE PAPER: Inorganic Materials of Industrial Importance

UNIT: IV: Batteries

CLASSES	TOPIC	OBJECTIVES	OUTCOME
1	Introduction to batteries and their usage in day-to-day life	Introductory class	Students can elaborate on usage of batteries and their usage in day-to-day life
2	Primary and secondary batteries	Difference between primary and secondary batteries	Students can elaborate on Primary and secondary batteries with examples
3	Battery components and their role	Class on components of batteries and their role	Students can elaborate on components of battery and their role
4	Characteristics of Battery.	Class on characteristics of battery	Students can elaborate on characteristic of battery
5	Working of Pb acid batteries:	Working mechanism of Pb acid batteries	Students can diagrammatically explain the mechanism of Pb acid batteries
6	Working of Li Battery	Application and working of Li battery	Students can diagrammatically explain the mechanism of Li battery
7	Working of solid-state electrolyte battery	Application and working of solid-state electrolyte battery taught	Students can diagrammatically explain the mechanism of solid-state electrolyte battery
8	Working and application of Fuel cells	Application and working of Fuel cells taught	Students can diagrammatically explain the mechanism of Fuel cells
9	Working of Solar cell and polymer cell	Application and working of solar cell and polymer cells taught in details	Students can diagrammatically explain the mechanism of solar cell and polymer cells

PAPER CODE: DSE-603

TITLE OF THE PAPER: Dissertation

UNIT: Project Work

EXPECTED DATE OF COMPLETION OF THE UNIT: 10th April, 2022

CLASSES	TOPIC	OBJECTIVES	OUTCOME
1	In this paper students have to carry out	To develop the written and	Communication effectively, verbally and
	project work (Laboratory experiments or	verbal communication. To	written for the purpose of conveying
	Comprehensive Review work on a specified	present information in a clear an	chemical information to both professional
	topic)	effective manner, to write report	scientist and to the public
		in a scientific style and to solve	
		scientific problems	

ODD SEM

II. ASSIGNED PAPERS AND UNIT

SEMESTER	PAPER CODE	PAPER TITLE	UNITS
1 st (H)	C-102	Physical Chemistry	Unit II (Liquid State)
1 st (H)	C-102	Physical Chemistry	Unit IV (Ionic Equilibrium)
1 st (H)	C-102 Lab	Physical Chemistry Laboratory	Practical
3 rd (H)	C-303	Physical Chemistry	Unit II (Chemical Kinetics)
3 rd (H)	C-303 Lab	Physical Chemistry Laboratory	Practical
3 rd (GE)	GE-301	Physical Chemistry	Unit-3 (Conductance)
3 rd (GE)	GE-301 Lab	Physical Chemistry Laboratory	Practical
5 th (H)	C-502	Physical Chemistry	Unit-II (Spectroscopy)
5 th (H)	C-502 Lab	Physical Chemistry Laboratory	Practical

III. PAPER WISE/UNIT WISE LESSON PLAN

PAPER CODE: C-102

TITLE OF THE PAPER: Physical Chemistry

UNIT: 1: Gaseous State

CLASSES	TOPIC	OBJECTIVES	OUTCOME
1	Introductory Class	To put an overview in the subject,	To make the subject interesting
		Chemistry	
2	States of Matter	To emphasize on different states of	Physical properties of solids and how it
		matter & their mechanical treatment	is different from liquids and gas
3	Kinetic molecular model of a gas:	To teach the postulates that define the	Students can derive the kinetic gas
	postulates and derivation of the kinetic	gaseous state and their relevance	equation and know the significance and
	gas equation		relations between the functions
4	Collision frequency; collision diameter;	Diagrammatically represent collision	Students can define and differentiate
	mean free path and viscosity of gases	freq, diameter and mean free path	between them
5	Temperature and pressure dependence	Mathematical relation to show the	Students should be able to determine the
		dependence	relation and the T and P dependence
6	Relation between mean free path and	Theory, concept and derivation of	Students are able to understand the
	coefficient of viscosity	relation between coeff of viscosity and	relation
		mean free path of a gas	
7	Variation of viscosity with temperature	Temperature and pressure effect on	Relation between viscosity and
	and pressure.	viscosity	temperature and pressure
8	Average, root mean square and most	Class on types of velocities	Students can differentiate between the
	probable velocities		types of velocities
9	Maxwell distribution of molecular		Maxwell distribution is learnt
	velocities		

10	Maxwell distribution of molecular	Explanation on distribution of molecular	
	energies, average kinetic energy	velocities and molecular energies,	
		average kinetic energy	
11	Law of equipartition of energy and	Class on law of equipartition and DOF	Students can define law of equipartition
	degrees of freedom		of energy
12	Molecular basis of heat capacities	Heat capacities	Students understand the Molecular basis
			of heat capacities
13	Behaviour of real gases: Deviations	Explanation on behavior and deviation	Students explain the deviation of ideal
	from ideal gas behaviour	of ideal gas behaviour	gas behaviour
14	Compressibility factor, Z, and its	Elaboration on z and variation with P	Compressibility factor graphically is
	variation with pressure for different	for different gases	made understood.
	gases		
15	Causes of deviation from ideal behavior	Explanation for deviation of ideal	Students can correlate the causes of
		behaviour	deviation
16	van der Waals equation of state, its	Class on van der Waals equation and its	Real gas behaviour, van der Waals
	derivation and application in explaining	application	equation and derivation can be done by
	real gas behaviour		students
17	van der Waals equation expressed in	Explanation on Boyle Temperature –	Virial form and Boyle Temp can be
	virial form and calculation of Boyle	definition and derivation	derived by the students
	temperature.		
18	Other equations of state (Berthelot,	Class on other equations of states	Berthelot and Dietrici equation
	Dietrici); virial equation of state		
19	Isotherms of real gases and their	Elaboration on isotherms of real gases	Isotherms of both real and van der Waals
	comparison with van der Waals	and variation from van der Waals	gases
	isotherms	isotherm	
20	Continuity of states	Explanation on continuity of states	Concept of continuity of states is taught
21	Critical state, relation between critical	Class on critical states, critical \overline{T} , P and	Students can do numerical and the
	constants and van der Waals constants	V and their relations with vdW	relation between T_c , P_c and V_c
		constants	

22	Law of corresponding states	Explanation of law of corresponding	Law is learnt
		states	

UNIT: III Solid State

CLASSES	TOPIC	OBJECTIVES	OUTCOME
1	Nature of the solid state	To build the foundation on states of	Students know what solids are and how
		matter and particularly solids	they are different from gas and liquid.
2	Law of constancy of interfacial angles,	Laws are taught for better	Students can define the laws and use
	law of rational indices	understanding of the solid state and	them when required
		crystallography	
3	Miller indices	Class on Miller indices for solids	Students learn about miller indices
4	Elementary ideas of symmetry,	Introduction to symmetry elements	Plane of symmetry, point of symmetry,
	symmetry elements and symmetry		identity elements are learnt
	operations		
5	Qualitative idea of point and space	Taught how to identify the lattice planes	Students learn about lattice plane
	groups		identification
6	Seven crystal systems and fourteen	Concept of the 7-crystal system and 14	Students can diagrammatically show the
	Bravais lattices	Bravais lattices	14 Bravais lattices
7	X-ray diffraction and Bragg's law	Class on Bragg's law	Students learn about Law X-ray
			diffraction
8	An account of rotating crystal method	Explanation of the rotating crystal	Students can draw and elaborate the same
	and powder pattern method	method and powder pattern method	
9	Analysis of powder diffraction patterns	Qualitative treatment of structure of	Students learn about structure of NaCl
	of NaCl, CsCl and KCl	NaCl	
10	Defects in crystals	Crystal defects and reasons and	Students learn about crystal defects and
		implications taught	its implications

11	Glasses and liquid crystals	Taught glasses and liquid crystals	Students learn about glasses and liquid
			crystals

PAPER CODE: C-102 Lab

TITLE OF THE PAPER: Physical Chemistry

UNIT: Practical

EXPECTED DATE OF COMPLETION OF THE UNIT: 31th October, 2021

CLASSES	TOPIC	OBJECTIVES	OUTCOME
1	Surface tension measurements	Determine the surface tension of	Practical knowledge on surface tension of
		various liquids by drop number	liquid
		method	
2	Determination of viscosity	Viscosity of various liquids	Practical knowledge on viscosity of liquid
3	pH metry	pH-metric titration of strong acid	Practical knowledge on pH meter and pH
		vs strong base	metric titration
4	pH metry	pH-metric titration of weak acid	Practical knowledge on pH meter and pH
		vs strong base	metric titration

PAPER CODE: C-303

TITLE OF THE PAPER: Physical Chemistry

UNIT: I Phase Equilibria

CLASSES	TOPIC	OBJECTIVES	OUTCOME
1	Concept of phases, components and degrees of freedom	Foundation course	Students have the concept of phases, components and DOF
2	Derivation of Gibbs Phase Rule for non- reactive and reactive systems	Mathematical derivation	Can derive the Phase rule
3	Clausius-Clapeyron equation	Concept of the theory	Students know about the CC equation
4	CC equation and its applications to solid- liquid, liquid-vapour and solid-vapour equilibria	Applications of the theory to different systems	Students learn about the CC equation applied to S-L, L-V and S-V equilibria
5	Phase diagram for one component systems with applications	Explanation of 1 Component system with application	Students can draw phase diag of different 1 C systems
6	Phase diagrams for systems of solid-liquid equilibria involving eutectic systems	Explanation, application and example of eutectic systems	Students know about the eutectic phase diagram
7	Systems with congruent and incongruent melting points	Explanation of systems with congruent and incongruent melting points	Congruent and incongruent melting point is clear
8	Solid solutions	To teach about solutions of solids	Students learn about solid solutions
9	Three component systems, water- chloroform-acetic acid system and triangular plots	3 C systems and triangular plots of the specified are explained	Students can draw the triangular plot of 3C systems
10	Gibbs-Duhem-Margules equation and its derivation	Explanation of Gibbs-Duhem- Margules equation and derivation	Students can derive it
11	Applications of GDM to fractional distillation of binary miscible liquids in ideal and non-ideal equilibria	GDM equation applied to fractional distillation of binary liquids of both ideal and non-ideal equilibria	Students learn about the application of GDM to binary liquids of ideal and non-ideal equilibria
12	Azeotropes	Class on the definition and formation of azeotropes	Students can explain about azeotropes and their types
13	Lever rule and partial miscibility of liquids	To teach about the lever rule and the partial miscibility of liquids	Students learn about the form of lever rule and partial miscibility of liquids

14	CST; miscible pairs	Explanation on Critical Solution	Students learn about the CST with
		temperature and miscible pairs of	examples and miscible pairs of liquid
		liquids	
15	Steam distillation	Explanation on Steam Distillation	Students can draw and explain the steam
			distillation
16.	Nernst distribution law: its derivation and	Class on Nernst distribution law	They can derive and apply the Nernst
	applications	with derivation and applications	distribution law
17.	Doubt clearing and problem solving	Class on numericals and doubt	Students are given to solve numerical
	session	clearing	pertaining to various aspects of the chapter

UNIT: III: Catalysis

CLASSES	TOPIC	OBJECTIVES	OUTCOME
1	Types of catalyst	Foundational class on catalysis	Types of catalysts are made known
2	Specificity and selectivity	Concept of specificity and selectivity	Students know the difference of specificity and selectivity
3	Mechanisms of catalyzed reactions solid surfaces	Solid surface catalysis explained with mechanism	Students can diagrammatically explain the mechanism of surface catalysis
4	Effect of particle size	Concept of particle size in catalysis elaborated	Students learn about the effect of particle size in catalysis
5	Efficiency of nanoparticles as catalysts	Nano-particles efficiency discussed	Students learn about the importance of nanoparticles
6	Enzyme catalysis	Explanation of the facets of enzyme catalysis	Students can explain the catalysis in enzyme systems

7	Michaelis-Menten mechanism	Michaelis-Menten equation and constant explained with turn-over number and graph	Students can graphically explain the enzyme action and explain MM mechanism
8	Acid-base catalysis	Explanation on both acid catalysed and base	Students learn about the acid-base
		catalysed reactions	catalysis

PAPER CODE: C-303 Lab

TITLE OF THE PAPER: Physical Chemistry Practical

UNIT: Practical

EXPECTED DATE OF COMPLETION OF THE UNIT: 15th October, 2021

CLASSES	TOPIC	OBJECTIVES	OUTCOME
1	Study the kinetics of the following	Acid hydrolysis	Knowledge on hydrolysis
	reactions: Acid hydrolysis of methyl		
	acetate with hydrochloric acid.		
2	Study the kinetics of the following reaction:	Base hydrolysis	Knowledge on saponification of ethyl
	Saponification of ethyl acetate		acetate
3	Adsorption:	Adsorption	Knowledge on adsorption
	Verify the Freundlich and Langmuir		
	isotherms for adsorption of acetic acid on		
	activated charcoal.		

PAPER CODE: GE-301

TITLE OF THE PAPER: Solutions, Phase Equilibrium, Conductance, Electrochemistry and Functional Group Organic Chemistry-II

UNIT: 1 Solutions

CLASSES	TOPIC	OBJECTIVES	OUTCOME
1	Solutions and Ideal solutions	Foundational class	Concept is built
2	Raoult's law and deviations from it	Solutions and derivation of Raoults law with application	Learn about it in details
3	Non-ideal solutions	Explanation of non-ideal solutions	Solutions of non-ideal nature is explained in details
4	Vapour pressure-composition and temperature composition curves of ideal Solutions	Vapour pressure and composition curve and temperature composition and composition curve of ideal solutions	Student are taught the concept of the graph in ideal solutions
5	Vapour pressure-composition and temperature composition curves of non-ideal Solutions	Vapour pressure and composition curve and temperature composition and composition curve of non- ideal solutions	Students are taught the concept of the graph in non-ideal solitions
6	Distillation of solutions and Azeotropes	Explanation on the process of solutions and azeotropes	Students are taught how distillations in solutions and taught about azeotropes
7	Partial miscibility of liquids: CST	Explanation on Critical solution temperature and partial miscibility of liquids	CST and partial miscibility concept taught
8	Effect of impurity on partial miscibility of liquids.	Effect of impurity discussed	Students learn about the effect impurity has on the miscibility of liquids
9	Immiscibility of liquids- Principle of steam distillation	Immiscibility of liquids explained and the principle of steam distillation elaborated	Students made to understand about the concept of immiscibility of liquids and how steam distillation is carried out
10	Nernst distribution law and its applications	Nernst distribution law explained with applications	Students are given the core concept and application part elaborated
11	Solvent extraction	Principle, application and need of solvent extraction taught	Students learn about it in details for different systems

UNIT: II Phase Equilibrium

CLASSES	TOPIC	OBJECTIVES	OUTCOME
1	Introduction to Phase Equilibria and	Foundation class	Introduced to the concept of phase
	criteria of phase equilibrium		equilibria and criteria for it
2	Phases, components and degrees of	Concept of the theory	Students have the concept of phases,
	freedom of a system		components and DOF
3	Gibbs Phase Rule and its	Applications of the theory to different	Can derive the Phase rule
	thermodynamic deviation	systems	
4	Phase diagrams of one-component	Explanation of 1 Component system	Students can draw phase diag of different 1
	system of i) water and ii)sulphur)	with application	C systems
5	Two component systems involving	Explanation, application and example of	Students know about the eutectic phase
	eutectics	eutectic systems	diagram
6	Phase system with congruent and	Congruent and incongruent m.p.	Students are taught about the congruent
	incongruent melting points	pertaining to specific system elaborated	and incongruent m.p for systems as given
	specifically lead –silver, FeCl ₃ -H ₂ O		in syllabus
	and Na-K systems		

UNIT: IV Electrochemistry

CLASSES	TOPIC	OBJECTIVES	OUTCOME
1	Reversible and irreversible cells	Foundational class to teach about	Students learn about Reversible and
		reversibility and irreversibility	irreversible cells
2	Concept of EMF of a cell	Concept of EMF of the cell	Students learn about EMF
3	Measurement of EMF of a cell	Taught about how EMF of the cell is	Students learn about measurement of EMF
		measured	technique
4	Nernst equation and its importance	Importance and explanation of Nernst	Students learn about Nernst equation and
		equation	its application
5	Types of electrodes	Class on the types of electrodes	Types of electrodes is learnt by them

6	Standard electrode potential.	Class on concept and determination of Standard electrode potential	Students learn about concept and determination of Standard electrode potential
7	Electrochemical series	Class on electrochemical series	Concept and elaboration of electrochemical series
8	Thermodynamics of a reversible cell.	Taught about the thermodynamics of reversible cell.	Students learn about thermodynamics of reversible cell
9	Calculation of thermodynamic properties: ΔG , ΔH and ΔS from EMF data	EMF data correlation with thermodynamic properties	Students learn about EMF correlation with thermodynamic properties
10	Calculation of equilibrium constant from EMF data	Relation on K_{eq} with EMF data taught	Students learn about relation on K_{eq} with EMF
11	Concentration cells with transference and without transference	Explanation of concentration cells with transference with and without transference	Students learn about of concentration cells with transference with and without transference
12	Liquid junction potential and salt bridge	LJP and salt bridge concept and explanation	Students learn about LJP and salt bridge
13	pH determination using hydrogen electrode and quinhydrone electrode	Class on how pH is determined using H and quinhydrone electrode	Students learn about H and quinhydrone electrode in pH determination

PAPER CODE: GE-301 Lab

TITLE OF THE PAPER: Chemistry Practical

UNIT: Section A: Physical Chemistry

EXPECTED DATE OF COMPLETION OF THE UNIT: 15th October, 2021

CLASSES	TOPIC	OBJECTIVES	OUTCOME
1	Determination of cell constant	Cell constant	Use of conductivity bridge

2	Determination of conductometric	conductometric titration	Use of conductivity bridge
	titrations: Strong acid vs. strong base		
3	Determination of conductometric	conductometric titration	Use of conductivity bridge
	titrations: Weak acid vs. strong base		

PAPER CODE: C-502

TITLE OF THE PAPER: Physical Chemistry

UNIT: I Quantum Chemistry

CLASSES	TOPIC	OBJECTIVES	OUTCOME
1	Background of quantum mechanics and its	Foundational class on the importance of quantum nature	Each topic is
	necessity		tough, so
2	Postulates of quantum mechanics	Postulates of quantum mechanics is taught	every student
3	Quantum mechanical operators	Concept of operators and how they function	is taken care
4	Schrödinger equation and its application to	Need 3-4 classes to provide proper understanding and	of
	1. free particle and	appreciation of the topic	individually
	2. "particle-in-a-box"(rigorous treatment)		to learn and
5	quantization of energy levels and zero-point	ZPE and energy quantization in quantum mechanics	grasp every
	energy		concept. It
6	Heisenberg Uncertainty principle	Heisenberg uncertainty principle explained in both forms in	was observed
		details	that in some
7	Wavefunctions – concept and foundation	Definition and form of wavefunction	cases student
8	Probability distribution functions	Concept of probability distribution function	would fully
9	Nodal properties	Properties and types of nodes	understand
10	Extension to two- and three-dimensional	2-D, 3-D boxes and their nodal properties	and do a few
	boxes		topics and for
11	Technique of separation of variables	Concept of separation of variable	others they

12	Concept of degeneracy	Degeneracy concept and rules and form	struggled.
13	Qualitative treatment of simple harmonic oscillator model of vibrational motion	SHO qualitative treatment	Ample time is given for
14	Setting up of Schrödinger equation and discussion of solution and wavefunctions	Solutions and wavefunctions of Schrödinger equation	the completion of
15	Vibrational energy of diatomic molecules and zero-point energy.	Vib energy of diatomic molecules and ZPE explained in correlation	this chapter
16	Commutation rules and Angular momentum	Commutation rules are taught and operator of ang momentum is derived	
17	quantization of square of total angular momentum and z-component	Angular momentum in quantum systems elaborated	
18	Rigid rotator model of rotation of diatomic molecule	Rigid rotor explained in quantum form in much detail	
19	Schrödinger equation, transformation to spherical polar coordinates	Transformation of coordinates is taught	
20	Spherical harmonics Discussion of solution	Simple harmonics and solutions to such systems	
21	Qualitative treatment of hydrogen atom and hydrogen-like ions	setting up of Schrödinger equation in spherical polar coordinates for H and H-like ions	
22	Radial part and quantization of energy (only final energy expression).	Final energy expression with radial part and quantization of energy taught	
23	Average and most probable distances of electron from nucleus	Class on Average and most probable distances of electron from nucleus]
24	Setting up of Schrödinger equation for many-electron atoms (He, Li)	setting up of Schrödinger equation is taught for other systems	
25	Statement of variation theorem and application to simple systems (particle-in-a- box, harmonic oscillator, hydrogen atom)	Need for approximation methods is emphasized and the variation theorem and its application to already taught system is explained.	

UNIT: III Photochemistry

CLASSES	TOPIC	OBJECTIVES	OUTCOME
1	Characteristics of electromagnetic radiation	Foundational class on EM radiation	Concept is built
2	Lambert-Beer's law and its limitations	Law of Beer and Lambert,	Application, use and limitation with the
		application and limitations	definition of Beer-Lambert law
3	Physical significance of absorption	Absorption coefficients and physical	Students learn about coefficient of
	coefficients	significance	absorption and its physical significance
4	Laws of photochemistry	Important laws of photochemistry	Two more laws on photochemistry are made known
5	Quantum yield	Class on Quantum yield and its	Students learn about quantum yield and
		calculation of different types	its calculation
6	Actinometry	Class on the concept of actinometry	Actinometry concept and mechanism
7	Examples of low and high quantum yields	Concept of high and low quantum	Students can explain the reason of high
		yields	and low quantum yields
8	Photochemical equilibrium and the	Class on photochemical equilibrium	Students learn about the photochemical
	differential rate of photochemical reactions	and rates of photochemical reactions	equilibrium and rate of such reactions
9	Photosensitised reactions	Explanation on photosensitized	Students learn about photosensitized
		reaction and their mechanism	reaction
10	Quenching	Concept of quenching	Students learn and can explain about
			quenching
11	Role of photochemical reactions in	Biochemical processes involving	Students learn about the photochemistry
	biochemical processes	photochemical reactions	involved in biochemical process
12	Photostationary states	Concept of photostationary states	Students can explain about
			photostationary states
13	Chemiluminescence	Elaboration on light generated in	Students learn about
		chemical reaction	chemiluminescence and its mechanism
14	General discussion and doubt clearing	Doubt clearing session	Opportunity to learn by solving
			problems

PAPER CODE: C-502 Lab

TITLE OF THE PAPER: Physical Chemistry Practical

UNIT: Practical

EXPECTED DATE OF COMPLETION OF THE UNIT: 15th October, 2021

CLASSES	TOPIC	OBJECTIVES	OUTCOME
1	Study the 200-500 nm absorbance spectra	absorbance spectra	Practical knowledge on spectroscopy
	of KMnO4 and K2Cr2O7 (in 0.1 M		
	H2SO4) and λ determine the max values.		
2	Verify Lambert-Beer's law and determine	Lambert-Beer's law	Practical knowledge on spectroscopy
	the concentration of KMnO4 in a solution		
	of unknown concentration		

IV. PEDAGOGY

TEACHING METHODOLOGY	TEACHING LEARNING RESOURCES	EVALUATION METHODS
In the beginning, to teach a unit of the	Teaching learning resources used for teaching is	Traditional method of
syllabus, we try to give an overview of the	mostly White Board and Marker pen. Apart from	evaluation is used in
content of the unit. Then One by one each	these some modes of structure of molecules are	combination with points given
topic is taught along with clearing all the	used for teaching. Online teaching with google	to the assignments in online
drought of the students. End of each topic, if	classroom, zoom, insert learning, online quizzes are	mode.
required, problems (mathematical problems)	also handed out.	
also are solved for the students.	Youtube links are also shared depending upon the	
	clarity of the students and the relevance of the topic	
	taught. Interactive teaching plays a major role	

V. STUDY MATERIALS

SEMESTER	SOURCES OF STUDY MATERIALS INCLUDING	GOOGLE CLASS ROOM LINKS OR CODE
	ONLINE	
	MATERIALS	
2^{nd} (H)	Text books, Reference	https://classroom.google.com/u/1/c/NTE4MjgxMTU1NzQ1
2^{nd} (GE)	books, Research papers	
	and online materials are	https://classroom.google.com/u/1/c/NTQ0MzY3ODE0MTkw
4^{th} (H)	used as study materials.	
4^{th} (GE)	Sometimes we prepare	https://classroom.google.com/u/1/c/NDg0OTIwNjE5ODUw
	notes for students	
6 th (H)	compiling the study	https://classroom.google.com/u/1/c/NDYzMzM0NjcyNTQx
	materials from different	
	books.	https://classroom.google.com/c/MzQ3MzA1MzU0MzQ3
	For all semesters the	
	study materials are	
	provided in both online	
	and offline mode.	

Saleen Shehren Begun

SIGNATURE

GARGAON COLLEGE TEACHING PLAN

Course: B. Sc.

Session: Odd semester 2022

Subject: CHEMISTRYName of the Teacher: Dr. PLABAN JYOTI SARMAMethods to be applied: Lecture, analytical and activity method, interaction and discussion.Teaching Materials: Green Board, Chalk Pencil, Duster, Book, Journal, Laptop, Projector.

PaperCode/Ti tle	Allotted Unit/ Topic	No. of Class required	Detail of the topics to be taught & class required	No. of tutorial s
CHEMISTRY C-101	Unit I: Atomic Structure	14	 Wave Mechanics [9] Pauli Exclusion principles, Hund's rule, Aufbau's principles [3] Variation of orbital energy with atomic number [2] 	3
	Unit II: Periodicity of Elements	9	 Effective Nuclear Charge, Slater's rule [3] Atomic Radii, ionic radii, Covalant radii [3] Ionization energy, electron affinity, electronegativity [3] 	3
CHEMISTRY C101-LAB	Inorganic Chemistry practical	28	 Titrimetric Analysis [8] Acid-Base Titrations [9] Oxidation-Reduction Titrimetry [9] Viva Voce [2] 	5
CHEMISTRY -C-301	Unit III: Chemistry of s and p Block Elements	30	 Inert pair effect, Relative stability of different oxidation states, diagonal relationship anomalous behaviour of first member of each group. [12] Allotropy and catenation. Complex, formation tendency 	5
			 of <i>s</i> and <i>p</i> block elements [5] Chemistry of Boron, Carbon, Nitrogen, Oxygen, helogens, Phosporus, Sulpher. [13] 	
	Unit V: Inorganic Polymers	8	 Types of inorganic polymers, comparison with organic polymers, synthesis, structural aspects and applications of silicones and siloxanes. [4] Borazines, silicates and phosphazenes, and 	2

			polysulphates. [4]	
CHEMISTRY	Inorganic Chemistry Practical	28	Iodo / Iodimetric Titrations [12]	3
-C-301-			 Inorganic preparations [14] 	
LAB			 Viva Voce [2] 	
CHEMISTRY	Unit IV:Electro-	05	• Theory of thermo-gravimetry	2
-DSE-501	analytical methods		(TG), basic principle of	
			for quantitative estimation of	
			Ca and Mg from their mixture	
			[5]	
	Unit IV:Electro-	10	Classification of electro-	2
	analytical methods		analytical methods, basic	
			principle of pH metric,	
			conductometric titrations.	
			Techniques used for the	
			determination of equivalence	
			points.Techniques used for the	
			determination of pKa values.	
	Unit V: Separation	15	Solvent extraction [7]	2
	techniques		Chromatography [8]	
CHEMISTRY	Analytical	28	• Paper chromatographic separation of $Fe^{3+} A 1^{3+} Cr^{3+}$	5
-DSE-	Methods in		Ag^+ , Hg_2^{2+} , and Pb^{2+} . [6]	
501-	Chemistry		• Determine the pH of the given	
PRACT	Prctical		aerated drinks fruit juices,	
			 Determination of dissolved 	
			oxygen in water. [8]	
			Analysis of soil:	
			determination of pH of soil.	
			[6]	
	Unit I: Atomic	14	 VIVa VOCE [2] Wave Mechanics [0] 	3
CHEMISTRY	Structure	17	 Pauli Exclusion principles 	5
-GE-101			Hund's rule, Aufbau's	
			principles [3]	
			• Variation of orbital energy	
	Inorgania Valumatria	20	with atomic number [2]	2
CHEMISTRY	Analysis	28	Inorganic estimation of Iron and Copper [20]	3
-GE-101-			• Estimation of water of	
LAB			crystallization in Mohr's salt.	
			• Viva Voce [4]	

GARGAON COLLEGE TEACHING PLAN

Course: B. Sc.

Session: Even semester 2023

Subject: CHEMISTRY

Name of the Teacher: Dr. PLABAN JYOTI SARMA

Methods to be applied: Lecture, analytical and activity method, interaction and discussion.

Teaching Materials: Green Board, Chalk Pencil, Duster, Book, Journal, Laptop, Projector.

Paper	Allotted	No. of Class	Detail of the topics to be taught	No. of
Code/Title	Unit/ Topic	required	& class required	tutorial
	-	-	-	S
CHEMISTRY -C-401	Unit II: Transition Elements	18	 General group trends with special reference to electronic configuration, colour, variable valency, magnetic and catalytic properties, and ability to form complexes. [8] Stability of various oxidation states and e.m.f. (Latimer and Bsworth diagrams). Difference between the first, second and third transition series. [5] Chemistry of Ti, V, Cr, Mn, Fe and Co in various oxidation states (excuding their metallurgy) [5] 	4
	Unit IV: Bioinorganic Chemistry	10	 Metal ion present in biological systems, classification of elements according to their action in biological system. Geo chemical effect on distribution of metals. Sodium/ K-pump, carbonic anhydrase and carboxypeptidase. [5] Excess and deficiency of some trace metals. Toxicity of metal ions (Hg, Pb, Cd and As), reasons for toxicity, use of chelating agents in medicine. [3] Iron and its application in biosystems, Haemoglobin, storage and transfer of iron. [2] 	3

			-		
CHEMISTRY	Inorganic Chamistana ti 1	28	•	Gravimetric Analysis [8]	4
-C-401-	Chemistry practical		•	Inorganic Preparation [8]	
IAR			•	[8]	
LAD			•	Viva-voce [4]	
CHEMISTRY	Unit I: Theoretical	10	•	Basic principles involved in	3
-C-601	Principles in Qualitative A palveis			analysis of cations and anions	
0 001	(H ₂ S Scheme)			common ion effect. [4]	
			•	Principles involved in	
				separation of cations into	
				groups and choice of group	
				Interfering anions (fluoride	
				borate, oxalate and phosphate)	
				and need to remove them after	
				Group II. [3]	
	Unit II:	22	•	Definition and classification of	4
	Organometallic			organometallic compounds on the basis of bond type	
	compounds			Concept of hapticity of	
				organic ligands. [3]	
			•	Metal carbonyls [10]	
			•	Zeise's salt [3]	
				Metal Alkyls. [3] Ferrocene [3]	
CHEMISTRY	Inorganic	28	•	Qualitative Inorganic	3
	Chemistry			Analysis: Salt analysis [25]	
-C-601-	Practicals		•	Viva – voce [3]	
LAB					
CHEMISTRY	Unit II: Fertilizers	8	•	Different types of fertilizers	3
-DSE-601			•	[2] Urea, ammonium	
				nitrate, calcium ammonium	
				nitrate, ammonium	
				phosphates; polyphosphate,	
				compound and mixed	
				fertilizers, potassium chloride,	
		20		potassium sulphate. [6]	4
CHEMISTRY	Inorganic	28	•	Determination of free acidity	4
-DSE-601-	Materials of			fertilizer. [6]	
LAB	Industrial		•	Determination of free acidity	
	Importance			fertilizer. [6]	
	practical		•	Determination of composition	
			_	ot dolomite [6]	
				Preparation of nigment [4]	
			•	Viva Voce [3]	
	1	40	1		-
CHEMISTRY	Project Work	48	•	Project Work [48]	6

-DSE-603				
CHEMISTRY -GE-401	Unit I: Transition Series Elements (3d series)	12	 General group trends with special reference to electronic configuration, variable valency, colour, magnetic and catalytic properties, ability to form complexes and stability of various oxidation states (Latimer diagrams) for Mn, Fe and Cu [8] Lanthanoids and actinoids: Electronic configurations, oxidation states, colour, magnetic properties, lanthanide contraction, separation of lanthanides (ion exchange method only). [4] 	3
CHEMISTRY	Section A:	14	 Semi-micro qualitative analysis using H2S of mixtures 	2
-GE-401-	Inorganic		[11]	
LAB	Chemistry		• Viva Voce [3]	
